Skip to main content
Log in

Water storage loss in central and south Asia from GRACE satellite gravity: correlations with climate data

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Recent decrease of water supply in central Asia and south Asia affects billions of people here. By filtering the errors at higher frequency components and correcting for the contaminated components, we enhance the monthly GRACE gravity fields to improve the determination of change in equivalent water height (EWH). The water storage changes from GRACE and the GLDAS hydrology model all show decreasing trends in this region. At the annual and inter-annual time scales, significant correlations between the variations in EWH and the variations in temperature, precipitation and snow equivalent height are found, especially at high altitude stations, suggesting that climate change is the driving factor for the water depletion in central Asia and south Asia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andersen OB, Hinderer J (2005) Global inter-annual gravity changes from GRACE: early results. Geophys Res Lett 32:L01402. doi:10.1029/2004GL020948

    Article  Google Scholar 

  • Bettadpur S (2007) Gravity recovery and climate experiment: UTCSR level-2 processing standards document for level-2 product release 0004. Center for Space Research, the University of Texas at Austin

  • Brodzik MJ, Armstrong R, Savoie M (2007) Global EASE-grid 8-day blended SSM/I and MODIS snow cover (April 2002–January 2008). National Snow and Ice Data Center, Digital media, Boulder

    Google Scholar 

  • Chambers DP (2006) Evaluation of new GRACE time-variable gravity data over the ocean. J Geophys Res Lett 33:L17603. doi:1029/2006GL027296

    Article  Google Scholar 

  • Chambers DP, Wahr J, Tamisiea ME, Nerem RS (2010) Ocean mass from GRACE and glacial isostatic adjustment. J Geophys Res 115:B11415. doi:10.1029/2010JB007530

    Article  Google Scholar 

  • Chen JL, Wilson CR, Famiglietti JS, Rodell M (2006) Attenuation effect on seasonal basin-scale water storage changes from GRACE time-variable gravity. J Geod 23:5–7. doi:10.1007/s00190-006-0104-2

    Google Scholar 

  • Chen JL, Wilson CR, Tapley BD, Yang ZL, Niu GY (2009) 2005 drought event in the Amazon River basin as measured by GRACE and estimated by climate models. J Geophys Res 114:B05404. doi:10.1029/2008JB006056

    Article  Google Scholar 

  • Chowdhury MDR, Ward N (2004) Hydro-meteorological variability in the greater Ganges–Brahmaputra–Meghna basins. Int J Climatol 24:1495–1508

    Article  Google Scholar 

  • Fan Y, Dool VDH (2004) Climate prediction center global monthly soil moisture data set at 0.5° resolution for 1948 to present. J Geophys Res 109:D10102. doi:10.1029/2003JD004345

    Article  Google Scholar 

  • Heki K, Matsuo K (2010) Time-variable ice loss in Asian high mountains from satellite gravimetry. Earth Planet Sci Lett 290:30–36

    Article  Google Scholar 

  • Huffman GJ, Bovin DT (2009) GPCP version 2.1 combined precipitation data set document. Laboratory for Atmospheres, NASA Goddard Space Flight Center and Science Systems and Applications, Inc

  • Huffman GJ, Adler RF, Rudolf B, Schneider U, Keehn PR (1995) Global precipitation estimates based on a technique for combining satellite-based estimates, rain gauge analysis, and NWP model precipitation information. J Climate 8:1284–1295

    Google Scholar 

  • Huffman GJ, Adler RF, Bolvin DT, Gu G (2009) Improving the global precipitation record: GPCP Version 2.1. Geophys Res Lett 36:L17808. doi:10.1029/2009GL040000

    Article  Google Scholar 

  • Hwang C, Kao YC (2006) Spherical harmonic analysis and synthesis using FFT: application to temporal gravity variation. Comput Geosci 32:442–451. doi:10.1016/j.cageo.2005.07.006

    Article  Google Scholar 

  • Hwang C, Kao YC, Tangdamrongsub N (2011) A preliminary analysis of lake level and water storage changes over Lakes Baikal and Balkhash from satellite altimetry and gravimetry. Terr Atmos Ocean Sci 22(2). doi: 10.3319/TAO.2010.05.19.01(TibXS)

  • Jekeli C (1981) Alternative methods to smooth the earth’s gravity field. Report 327. Department of Geodetic Sciences, The Ohio State University, Columbus

    Google Scholar 

  • Jian J, Webster PJ, Hoyos CD (2009) Large-scale controls on Ganges and Brahmaputra River discharge on intraseasonal and seasonal time-scales. Q J R Meteorol Soc 135:353–370

    Article  Google Scholar 

  • Liu X (2008) Global gravity field recovery from satellite-to-satellite tracking data with the acceleration approach. Publications on Geodesy 68, Delft

  • Milly PCD, Shmakin AB (2002) Global modeling of land water and energy balances. Part I: the land dynamics (LaD) model. J Hydrometeorol 3(3):283–299

    Article  Google Scholar 

  • Niederer P, Bilenko V, Ershova N, Hurni H, Yerokhin S, Maselli D (2008) Tracing glacier wastage in the northern Tien Shan (Kyrgyzstan/central Asia) over the last 40 years. Clim Change 86:227–234. doi:10.1007/s10584-007-9288-6

    Article  Google Scholar 

  • Pachauri RK, Reisinger A (2007) IPCC fourth assessment report. IPCC, Geneva

    Google Scholar 

  • Paulson A, Zhong S, Wahr J (2007) Inference of mantle viscosity from GRACE and relative sea level data. Geophys J Int 171:497–508. doi:10.1111/j.1365-246X.2007.03556.x

    Article  Google Scholar 

  • Peterson TC, Vose RS (1997) An overview of the global historical climatology network temperature database. Bull Am Meteorol Soc 78:2837–2849

    Article  Google Scholar 

  • Rodell M, Houser PR, Jambor U, Gottschalck J, Mitchell K, Meng CJ, Arsenault K, Cosgrove B, Radakovich J, Bosilovich M, Entin JK, Walker JP, Lohmann D, Toll D (2004) The global land data assimilation system. Bull Am Meteorol Soc 85(3):381–394

    Article  Google Scholar 

  • Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature 460:999–1002

    Article  Google Scholar 

  • Savoie MH, Armstrong RL, Brodzik MJ, Wang JR (2009) Atmosphere corrections for improved satellite passive microwave snow cover retrievals over Tibet Plateau. Remote Sens Environ 113:2661–2669

    Article  Google Scholar 

  • Shepherd A, Wingham D (2007) Recent sea-level contributions of the Antarctic and Greenland ice sheets. Science 315:1529. doi:10.1126/science.1136776

    Article  Google Scholar 

  • Swenson S (2011) Restoring signal loss in GRACE terrestrial water storage estimates (Draft). Available online at: ftp://podaac.jpl.nasa.gov/pub/tellus/grace_monthly/swenson_destripe/ss201008/doc/

  • Swenson S, Wahr J (2006) Post-processing removal of correlated errors in GRACE data. J Geophys Res Lett 33:L08402. doi:10.1029/2005GL025285

    Article  Google Scholar 

  • Swenson S, Chambers DP, Wahr J (2008) Estimating geocenter variations from a combination of GRACE and ocean model output. J Geophys Res Solid Earth 113:B08410. doi:10.1029/2007JB005338

    Article  Google Scholar 

  • Syed TH, Famiglietti JS, Rodell M, Chen JL, Wilson CR (2008) Analysis of terrestrial water storage changes from GRACE and GLDAS. Water Resour Res 44:W02433. doi:10.1029/2006WR005779

    Article  Google Scholar 

  • Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31:L09607. doi:10.1029/2004GL019920

    Article  Google Scholar 

  • Tiwari VM, Wahr J, Swenson S (2009) Dwindling groundwater resources in northern India, from satellite gravity observations. Geophys Res Lett 36:L18401. doi:10.1029/2009GL039401

    Article  Google Scholar 

  • Wahr J, Molenaar M, Bryan F (1998) Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res Lett 103(B12):30, 205–230, 229

    Google Scholar 

  • Wahr J, Swenson S, Zlotnicki V, Velicogna I (2004) Time-variable gravity from GRACE: First results. J Geophys Res Lett 31:L11501. doi:10.1029/2004GL019779

    Article  Google Scholar 

  • Wu SC, Kruizinga G, Bertiger W (2006) Algorithm theoretical basis document for GRACE level-1B data processing V1.2. Jet Propulsion Laboratory, California Institute of Technology

Download references

Acknowledgments

This study is supported by the National Science Council, and the National Space Organization (NSPO), Taiwan, under the 2010 project “Precise orbit determination and analysis of earth’s gravity field from FORMOSAT-3/COSMIC GPS data.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheinway Hwang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tangdamrongsub, N., Hwang, C. & Kao, YC. Water storage loss in central and south Asia from GRACE satellite gravity: correlations with climate data. Nat Hazards 59, 749–769 (2011). https://doi.org/10.1007/s11069-011-9793-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-011-9793-9

Keywords