Skip to main content

Advertisement

Log in

Early Detection of Memory Impairment in Alzheimer’s Disease: A Neurocognitive Perspective on Assessment

  • Published:
Neuropsychology Review Aims and scope Submit manuscript

Abstract

We propose that the earliest neuropsychological detection of Alzheimer’s disease (AD) can be informed by current views about the neuropathogenesis of AD and cognitive models of memory and its neurobiological substrates. The primary impairment in early AD is encoding/consolidation, resulting from medial temporal lobe (MTL) pathology. On theoretical and empirical grounds, paired associate learning (PAL) appears to be the ideal paradigm for detecting MTL dysfunction in early AD. It has not been embraced as a test of choice, however, and this critical review discusses why the paradigm may have not fulfilled its potential. We suggest that a new PAL variant, ‘associate-recognition’, may prove to be clinically efficacious.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aggleton, J. P., & Brown, M. W. (1999). Episodic memory, amnesia, and the hippocampal-anterior thalamic axis. Behavioural & Brain Sciences, 22(3), 425–444.

    CAS  Google Scholar 

  • Aggleton, J. P., & Saunders, R. C. (1997). The relationships between temporal lobe and diencephalic structures implicated in anterograde amnesia. Memory, 5(1–2), 49–71.

    PubMed  CAS  Google Scholar 

  • Aggleton, J. P., & Shaw, C. (1996). Amnesia and recognition memory: A re-analysis of psychometric data. Neuropsychologia, 34(1), 51–62.

    PubMed  CAS  Google Scholar 

  • Albert, M. S. (1981). Geriatric neuropsychology. Journal of Consulting & Clinical Psychology, 49(6), 835–850.

    CAS  Google Scholar 

  • Arnold, S. E., Hyman, B. T., Flory, J., Damasio, A. R., & Van Hoesen, G. W. (1991). The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer’s disease. Cerebral Cortex, 1(1), 103–116.

    PubMed  CAS  Google Scholar 

  • Blackwell, A. D., Sahakian, B. J., Vesey, R., Semple, J. M., Robbins, T. W., & Hodges, J. R. (2004). Detecting dementia: Novel neuropsychological markers of preclinical Alzheimer’s disease. Dementia & Geriatric Cognitive Disorders, 17(1–2), 42–48.

    Google Scholar 

  • Braak, H., & Braak, E. (1991). Neuropathological staging of Alzheimer-related changes. Acta Neuropathologica, 82(4), 239–259.

    PubMed  CAS  Google Scholar 

  • Brandt, J., Corwin, J., & Krafft, L. (1992). Is verbal recognition memory really different in Huntington’s and Alzheimer’s disease. Journal of Clinical & Experimental Neuropsychology, 14(5), 773–784.

    CAS  Google Scholar 

  • Brookmeyer, R., Gray, S., & Kawas, C. (1998). Projections of Alzheimer’s disease in the United States and the public health impact of delaying disease onset. American Journal of Public Health, 88(9), 1337–1342.

    PubMed  CAS  Google Scholar 

  • Brown, M. W., & Aggleton, J. P. (2001). Recognition memory: What are the roles of the perirhinal cortex and hippocampus? Nature Reviews Neuroscience, 2, 51–61.

    PubMed  CAS  Google Scholar 

  • Buckley, M. J., & Gaffan, D. (1998). Perirhinal cortex ablation impairs configural learning and paired-associate learning equally. Neuropsychologia, 36(6), 535–546.

    PubMed  CAS  Google Scholar 

  • Burke, D. M., & Light, L. L. (1981). Memory and aging: The role of retrieval processes. Psychological Bulletin, 90(3), 513–546.

    PubMed  CAS  Google Scholar 

  • Clark, S. E., Hori, A., & Callan, D. E. (1993). Forced-choice associative recognition: Implications for global-memory models. Journal of Experimental Psychology: Learning, Memory, & Cognition, 19(4), 871–881.

    Google Scholar 

  • Cohen, N. J., & Eichenbaum, H. (1993). Memory, amnesia, and the hippocampal system. Massachusetts, USA: The MIT Press.

    Google Scholar 

  • Cohen, N. J., Ryan, J., Hunt, C., Romine, L., Wszalek, T., & Nash, C. (1999). Hippocampal system and declarative (relational) memory: Summarizing the data from functional neuroimaging studies. Hippocampus, 9(1), 83–98.

    PubMed  CAS  Google Scholar 

  • Dalla Barba, G. (1997). Recognition memory and recollective experience in Alzheimer’s disease. Memory, 5(6), 657–672.

    PubMed  Google Scholar 

  • De Jager, C. A., Milwain, E., & Budge, M. (2002). Early detection of isolated memory deficits in the elderly: The need for more sensitive neuropsychological tests. Psychological Medicine, 32 (3), 483–491

    CAS  Google Scholar 

  • Donaldson, D. I., & Rugg, M. D. (1998). Recognition memory for new associations: Electrophysiological evidence for the role of recollection. Neuropsychologia, 36(5), 377–395.

    PubMed  CAS  Google Scholar 

  • Dosher, B. A., & Rosedale, G. (1989). Integrated retrieval cues as a mechanism for priming in retrieval from memory. Journal of Experimental Psychology: General, 118(2), 191–211.

    Google Scholar 

  • Dosher, B. A., & Rosedale, G. S. (1997). Configural processing in memory retrieval: Multiple cues and ensemble representations. Cognitive Psychology, 33(3), 209–265.

    PubMed  CAS  Google Scholar 

  • Duchek, J. M., Cheney, M., Ferraro, F. R., & Storandt, M. (1991). Paired associate learning in senile dementia of the Alzheimer type. Archives of Neurology, 48(10), 1038–1040.

    PubMed  CAS  Google Scholar 

  • Eichenbaum, H. (2000). A cortical-hippocampal system for declarative memory. Nature Reviews Neuroscience, 1(1), 41–50.

    PubMed  CAS  Google Scholar 

  • Ekstrom, A. D., Kahana, M. J., Caplan, J. B., Fields, T. A., Isham, E. A., Newman, E. L., et al. (2003). Cellular networks underlying human spatial navigation. Nature, 425(6954), 184–187.

    PubMed  CAS  Google Scholar 

  • Eldridge, L. L., Knowlton, B. J., Furmanski, C. S., Bookheimer, S. Y., & Engle, S. A. (2000). Remembering episodes: A selective role for the hippocampus during retrieval. Nature, 3(11), 1149–1152.

    CAS  Google Scholar 

  • Elias, M. F., Beiser, A., Wolf, P. A., Au, R., White, R. F., & D’Agostino, R. B. (2000). The preclinical phase of Alzheimer disease: A 22-year prospective study of the Framingham Cohort. Archives of Neurology, 57(6), 808–813.

    PubMed  CAS  Google Scholar 

  • Elwood, R. W. (1997). Episodic and semantic memory components of verbal paired-associate learning. Assessment, 4(1), 73–77.

    Google Scholar 

  • Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). ‘Mini-Mental State’: A practical way of grading the cognitive state for the clinician. Journal of Psychiatric Research, 12, 189–198.

    PubMed  CAS  Google Scholar 

  • Fowler, K. S., Saling, M. M., Conway, E. L., Semple, J. M., & Louis, W. J. (1997). Computerized neuropsychological tests in the early detection of dementia: Prospective findings. Journal of the International Neuropsychological Society, 3(2), 139–146.

    PubMed  CAS  Google Scholar 

  • Fowler, K. S., Saling, M. M., Conway, E. L., Semple, J. M., & Louis, W. J. (2002). Paired associate performance in the early detection of DAT. Journal of the International Neuropsychological Society, 8(1), 58–71.

    PubMed  Google Scholar 

  • Fox, N. C., Warrington, E. K., Seiffer, A. L., Agnew, S. K., & Rossor, M. N. (1998). Presymptomatic cognitive deficits in individuals at risk of familial Alzheimer’s disease. A longitudinal prospective study. Brain, 121(9), 1631–1639.

    PubMed  Google Scholar 

  • Fried, I., MacDonald, K. A., & Wilson, C. L. (1997). Single neuron activity in human hippocampus and amygdala during recognition of faces and objects. Neuron, 18(5), 753–765.

    PubMed  CAS  Google Scholar 

  • Gallo, D. A., Sullivan, A., L., Daffner, K. R., Schacter, D., & Budson, A. E. (2004). Associative Recognition in Alzheimer’s Disease: Evidence for Impaired Recall-to-Reject. Neuropsychology, 18(3), 556–563.

    PubMed  Google Scholar 

  • Giacobini, E. (2001). Do cholinesterase inhibitors have disease-modifying effects in Alzheimer’s disease? CNS Drugs, 15(2), 85–91.

    PubMed  CAS  Google Scholar 

  • Giovanello, K. S., Schnyer, D. M., Verfaellie, M. (2004). A critical role for the anterior hippocampus in relational memory: Evidence from an fMRI study comparing associative and item recognition. Hippocampus, 14(1), 5–8.

    PubMed  Google Scholar 

  • Graf, P., & Mandler, G. (1984). Activation makes words more accessible, but not necessarily more retrievable. Journal of Verbal Learning and Verbal Behaviour, 23(5), 553–568.

    Google Scholar 

  • Granholm, E., & Butters, N. (1988). Associative encoding and retrieval in Alzheimer’s and Huntington’s disease. Brain & Cognition, 7(3), 335–347.

    CAS  Google Scholar 

  • Greene, J. D., Baddeley, A. D., & Hodges, J. R. (1996). Analysis of the episodic memory deficit in early Alzheimer’s disease: Evidence from the doors and people test. Neuropsychologia, 34(6), 537–551.

    PubMed  CAS  Google Scholar 

  • Gronlund, S. D., & Ratcliff, R. (1989). Time course of item and associative information: Implications for global memory models. Journal of Experimental Psychology: Learning, Memory, & Cognition, 15(5), 846–858.

    CAS  Google Scholar 

  • Henke, K., Weber, B., Kneifel, S., Wieser, H. G., & Buck, A. (1999). Human hippocampus associates information in memory. Hippocampus, 10, 5884–5889.

    Google Scholar 

  • Hodges, J. R. (2000). Memory in the dementias: With special reference to Alzheimer’s disease and semantic dementia. In E. Tulving & F. Craik (Eds.), Handbook of memory (pp. 441–459). Oxford: Oxford University Press.

    Google Scholar 

  • Hodges, J. R., & Patterson, K. (1995). Is semantic memory consistently impaired early in the course of Alzheimer’s disease? Neuroanatomical and diagnostic implications. Neuropsychologia, 33(4), 441–459.

    PubMed  CAS  Google Scholar 

  • Huppert, F. A., Brayne, C., Gill, C., Payke, E. S., & Beardsall, L. (1995). CAMCOG—a concise neuropsychological test to assist dementia diagnosis: Socio-demographic determinants in an elderly population sample. British Journal of Clinical Psychology, 34(4), 529–541.

    PubMed  Google Scholar 

  • Hyman, B. T., Van Hoesen, G. W., Kromer, L. J., & Damasio, A. R. (1986). Perforant pathway changes and the memory impairment of Alzheimer’s disease. Annals of Neurology, 20(4), 472–481.

    PubMed  CAS  Google Scholar 

  • Jacoby, L. L., & Dallas, M. (1981). On the relationship between autobiographical memory and perceptual learning. Journal of Experimental Psychology: General, 110, 306–340.

    CAS  Google Scholar 

  • Janowsky, J. S., Carper, R. A., & Kaye, J. A. (1996). Asymmetrical memory decline in normal aging and dementia. Neuropsychologia, 34(6), 527–535.

    PubMed  CAS  Google Scholar 

  • Janowsky, J., Shimamura, A. P., & Squire, L. R. (1989). Memory and metamemory: Comparisons between patients with frontal lobe lesions and amnesic patients. Psychobiology, 17(1), 3–11.

    Google Scholar 

  • Janus, C. (2003). Vaccines for Alzheimer’s disease: How close are we? CNS Drugs, 17(7), 547–574.

    Google Scholar 

  • Karlsson, T., Johansson, I., Adolfsson, R., Nilsson, L., & Dubuc, S. (2003). Recognition memory in Alzheimer’s disease: A demonstration of a remarkable memory capacity in Alzheimer’s disease. Dementia and Geriatric Cognitive Disorders, 15(1), 6–9.

    PubMed  Google Scholar 

  • Laakso, M. P., Hallikainen, M., Hanninen, T., Partanen, K., & Soininen, H. (2000). Diagnosis of Alzheimer’s disease: MRI of the hippocampus vs delayed recall. Neuropsychologia, 38(5), 579–584.

    PubMed  CAS  Google Scholar 

  • Lacritz, L. H., Cullum, C. M., Weiner, M. F., & Rosenberg, R. N. (2001). Comparison of the Hopkins Verbal Learning Test—Revised to the California Verbal Learning Test in Alzheimer’s disease. Applied Neuropsychology, 8(3), 180–184.

    PubMed  CAS  Google Scholar 

  • Langley, L. K., & Madden, D. J. (2000). Functional neuroimaging of memory: Implications for cognitive aging. Microscopy Research & Technique, 51(1), 75–84.

    CAS  Google Scholar 

  • Lee, A. C., Rahman, S., Hodges, J. R., Sahakian, B. J., & Graham, K. S. (2003). Associative and recognition memory for novel objects in dementia: Implications for diagnosis. European Journal of Neuroscience, 18(6), 1660–1670.

    PubMed  Google Scholar 

  • Lezak, M. D. (1983). Neuropsychological assessment (2nd ed.). New York: Oxford University Press.

    Google Scholar 

  • Linn, R. T., Wolf, P. A., Bachman, D. L., Knoefel, J. E., Cobb, J. L., Belanger, A. J., et al. (1995). The ’preclinical phase’ of probable Alzheimer’s disease. A 13-year prospective study of the Framingham cohort. Archives of Neurology, 52(5), 485–490.

    PubMed  CAS  Google Scholar 

  • Mäantylä, T. (1986). Optimizing cue effectiveness: Recall of 500 and 600 incidentally learned words. Journal of Experimental Psychology: Learning, Memory, & Cognition, 12(1), 66–71.

    Google Scholar 

  • Maguire, E. A., & Mummery, C. J. (1999). Differential modulation of a common memory retrieval network revealed by positron emission topography. Hippocampus, 9, 54–61.

    PubMed  CAS  Google Scholar 

  • Mandler, G. (1980). Recognizing: The judgment of previous occurrence. Psychological Review, 87, 252–271.

    Google Scholar 

  • Mandler, G., Graf, P., & Kraft, D. (1986). Activation and elaboration effects in recognition and word priming. Quarterly Journal of Experimental Psychology: Human Experimental Psychology, 38, 645–662.

    Google Scholar 

  • Martin, A., Brouwers, P., Cox, C., & Fedio, P. (1985). On the nature of the verbal memory deficit in Alzheimer’s disease. Brain & Language, 25(2), 323–341.

    CAS  Google Scholar 

  • Mayes, A. R., Holdstock, J. S., Isaac, C. L., Hunkin, N. M., & Roberts, N. (2002). Relative sparing of item recognition memory in a patient with adult-onset damage limited to the hippocampus. Hippocampus, 12(3), 325–340.

    PubMed  CAS  Google Scholar 

  • Mayes, A. R., Holdstock, J. S., Isaac, C. L., Montaldi, D., Grigor, J., Gummer, A., et al. (2004). Associative recognition in a patient with selective hippocampal lesions and relatively normal item recognition. Hippocampus, 14(6), 763–784.

    PubMed  CAS  Google Scholar 

  • McWalter, G. J., Montaldi, D., Bhutani, G. E., & McCrory, S. (1991). Paired associate verbal learning in dementia of Alzheimer’s type. Neuropsychology, 5(3), 205–211.

    Google Scholar 

  • Meltzer, J., & Constable, R. T. (2005). Activation of human hippocampal formation reflects success in both encoding and cued recall of paired associates. NeuroImage, 24(2), 384–397.

    PubMed  Google Scholar 

  • Messinger, A., Squire, L. R., Zola, S. M., & Albright, T. D. (2001). Neuronal representations of stimulus associations develop in the temporal lobe during learning. Proceedings of the National Academ of Sciences of the United States of America, 98(21), 12239–12244.

    PubMed  CAS  Google Scholar 

  • Michel, J. P., Zekry, D., Mulligan, R., Giacobini, E., & Gold, G. (2001). Economic considerations of Alzheimer’s disease and related disorders. Aging (Milano), 13(3), 255–260.

    CAS  Google Scholar 

  • Moses, S. N., Cole, C., & Ryan, J. D. (2005). Relational memory for object identity and spatial location in rats with lesions of perirhinal cortex, amygdala and hippocampus. Brain Research Bulletin, 65(6), 501–512.

    PubMed  Google Scholar 

  • Nebes, R. D., & Brady, C. B. (1989). Focused and divided attention in Alzheimer’s disease. Cortex, 25(2), 305–315.

    PubMed  CAS  Google Scholar 

  • Nobel, P. A., & Shiffrin, R. M. (2001). Retrieval processes in recognition and cued recall. Journal of Experimental Psychology: Learning, Memory, & Cognition, 27(2), 384–413.

    CAS  Google Scholar 

  • Norman, K. A., & O’Reilly, R. C. (2003). Modelling hippocampal and neocortical contributions to recognition memory: A complementary-learning-systems approach. Psychological Review, 110(4), 611–646.

    PubMed  Google Scholar 

  • O’Connell, H., Coen, R., Kidd, N., Warsi, M., Chin, A., & Lawlor, B. (2004), Early detection of Alzheimer’s disease (AD) using the CANTAB Paired Associates Learning Test. International Journal of Geriatric Psychiatry, 19, 1207–1208.

    PubMed  Google Scholar 

  • O’Connor, M. K. (2002). The predictive utility of the Hopkins Verbal Learning Test—Revised in older adults with depression versus dementia of the Alzheimer’s type. Dissertation Abstracts International: Section B: The Sciences and Engineering, 63(1-B), 543.

  • Perry, R. J., & Hodges, J. R. (2000). Fate of patients with questionable (very mild) Alzheimer’s disease: Longitudinal profiles of individual subjects’ decline. Dementia & Geriatric Cognitive Disorders, 11(6), 342–349.

    CAS  Google Scholar 

  • Piercey, M., & Huppert, G. A. (1972). Efficient recognition of pictures in organic amnesia. Nature, 240, 564.

    Google Scholar 

  • Prince, S. E., Daselaar, S. M., & Cabeza, R. (2005). Neural correlates of relational memory: Successful encoding and retrieval of semantic and perceptual associations. Journal of Neuroscience, 25(5), 1203–1210.

    PubMed  CAS  Google Scholar 

  • Quamme, J. R., Yonelinas, A. P., Widaman, K. F., Kroll, N. E., & Sauve, M. J. (2004). Recall and recognition in mild hypoxia: Using covariance structural modelling to test competing theories of explicit memory. Neuropsychologia, 42, 672–691.

    PubMed  Google Scholar 

  • Ragland, J. D., Gur, R. C., Deutsch, G., Censits, D. M., & Gur, R. E. (1995). Reliability and construct validity of the Paired-Associate Recognition Test: A test of declarative memory using Wisconsin Card Sorting stimuli. Psychological Assessment, 7(1), 25–32.

    Google Scholar 

  • Reed, J. M., & Squire, L. R. (1997). Impaired recognition memory in patients with lesions limited to the hippocampal formation. Behavioral Neuroscience, 111(4), 667–675.

    PubMed  CAS  Google Scholar 

  • Rempel-Clower, N. L., Zola, S. M., Squire, L. R., & Amaral, D. G. (1996). Three cases of enduring memory impairment after bilateral damage limited to the hippocampal formation. Journal of Neuroscience, 16(16), 5233–5255.

    PubMed  CAS  Google Scholar 

  • Robbins, T. W., James, M., Owen, A. M., Sahakian, B. J., Lawrence, A. D., & Mclnnes, L., et al. (1994). A study of performance on tests from the CANTAB battery sensitive to frontal lobe dysfunction in a large sample of normal volunteers: Implications for theories of executive functioning and cognitive aging. Journal of the International Neuropsychological Society, 4, 474–490.

    Google Scholar 

  • Saling, M. M., Berkovic, S. F., O’Shea, M. F., Kalnins, R. M., Darby, D. G., & Bladin, P. F. (1993). Lateralization of verbal memory and unilateral hippocampal sclerosis: Evidence of task-specific effects. Journal of Clinical & Experimental Neuropsychology, 15(4), 608–618.

    CAS  Google Scholar 

  • Salmon, D. P., Shimamura, A. P., Butters, N., & Smith, S. (1988). Lexical and semantic priming deficits in patients with Alzheimer’s disease. Journal of Clinical and Experimental Neuropsychology, 10(4), 477–494.

    PubMed  CAS  Google Scholar 

  • Salmon, D. P., Thomas, R. G., Pay, M. M., Booth, A. Hofstetter, C. R., Thal, L. J., et al. (2002). Alzheimer’s disease can be accurately diagnosed in very mildly impaired individuals. Neurology, 59(7), 1022–1028.

    PubMed  CAS  Google Scholar 

  • Savage, G. R., Saling, M. M., Davis, C. W., & Berkovic, S. F. (2002). Direct and indirect measures of verbal relational memory following anterior temporal lobectomy. Neuropsychologia, 40(3), 302–316.

    PubMed  Google Scholar 

  • Shepard, R. N. (1967). Recognition memory of words, sentences, and pictures. Journal of Verbal Learning and Verbal Behaviour, 6, 156–163.

    Google Scholar 

  • Spaan, P. E. J., Raaijmakers, J. G. W., & Jonker, C. (2005). Neuropsychology, 19(5), 629–640.

    PubMed  Google Scholar 

  • Squire, L. R. (1992). Memory and the hippocampus: A synthesis from findings with rats, monkeys, and humans. Psychological Review, 99(2), 195–231.

    PubMed  CAS  Google Scholar 

  • Squire, L. R., & Zola, S. M. (1996). Structure and function of declarative and nondeclarative memory systems. Proceedings of the National Academy of Sciences of the United States of America, 93(24), 13515–13522.

    PubMed  CAS  Google Scholar 

  • Standing, L. (1973). Learning 10,000 pictures. Quarterly Journal of Experimental Psychology, 25(2), 207–222.

    PubMed  CAS  Google Scholar 

  • Standing, L., Conezio, J., & Harber, R. N. (1970). Perception and memory for pictures: Single trial learning of 2,560 visual stimuli. Psychometric Science, 19, 73–74.

    Google Scholar 

  • Stark, C. E., Bayley, P. J., & Squire, L. R. (2002). Recognition memory for single items and for associations is similarly impaired following damage to the hippocampal region. Learning & Memory, 9(5), 238–242.

    Google Scholar 

  • Stark, C. E., & Squire, L. R. (2003). Hippocampal damage equally impairs memory for single items and memory for conjunctions. Hippocampus, 13(2), 281–292.

    PubMed  Google Scholar 

  • Swainson, R., Hodges, J. R., Galton, C. J., Semple, J., Michael, A., Dunn, B. D., et al. (2001). Early detection and differential diagnosis of Alzheimer’s disease and depression with neuropsychological tasks. Dementia & Geriatric Cognitive Disorders, 12(4), 265–280.

    CAS  Google Scholar 

  • Tendolkar, I., Schoenfeld, A., Golz, G., Fernandez, G., Kuhl, K. P., Ferszt, R., et al. (1999). Neural correlates of recognition memory with and without recollection in patients with Alzheimer’s disease and healthy controls. Neuroscience Letters, 263(1), 45–48.

    PubMed  CAS  Google Scholar 

  • Tierney, M. C., Black, S. E., Szalai, J. P., Snow, W. G., Fisher, R. H., Nadon, G., et al. (2001). Recognition memory and verbal fluency differentiate probable Alzheimer disease from subcortical ischemic vascular dementia. Archives of Neurology, 58(10), 1654–1659.

    PubMed  CAS  Google Scholar 

  • Tierney, M. C., Szalai, J. P., Snow, W. G., Fisher, R. H., Nores, A., Nadon, G., et al. (1996). Prediction of probable Alzheimer’s disease in memory-impaired patients: A prospective longitudinal study. Neurology, 46(3), 661–665.

    PubMed  CAS  Google Scholar 

  • Tulving, E., & Schacter, D. L. (1990). Priming and human memory systems. Science, 247, 301–306.

    PubMed  CAS  Google Scholar 

  • Van Hoesen, G. W., & Hyman, B. T. (1990). Hippocampal formation: Anatomy and the patterns of pathology in Alzheimer’s disease. Progress in Brain Research, 83, 445–457.

    PubMed  Google Scholar 

  • Van Hoesen, G. W., Hyman, B. T., & Damasio, A. R. (1991). Entorhinal cortex pathology in Alzheimer’s disease. Hippocampus, 1(1), 1–8.

    PubMed  Google Scholar 

  • Vargha-Khadem, F., Gadian, D. G., Watkins, K. E., Connelly, A., Van Paesschen, W., & Mishkin, M. (1997). Differential effects of early hippocampal pathology on episodic and semantic memory. Science, 277, 376–380.

    PubMed  CAS  Google Scholar 

  • Wallenstein, G. V., Eichenbaum, H., & Hasselmo, M. E. (1998). The hippocampus as an associator of discontiguous events. Trends in Neurosciences, 21(8), 317–323.

    PubMed  CAS  Google Scholar 

  • Warrington, E. K. (1984). Recognition memory test. Windsor, UK: Nelson.

    Google Scholar 

  • Wechsler, D. (1981). Wechsler Adult Intelligence Scale—Revised. San Antonio, TX: The Psychological Corporation.

    Google Scholar 

  • Wechsler, D. (1987). Wechsler Memory Scale—Revised. San Antonio, TX: The Psychological Corporation.

    Google Scholar 

  • Wechsler, D. (1997). Wechsler Memory Scale—Third Edition. San Antonio, TX: The Psychological Corporation.

    Google Scholar 

  • Weingartner, H., Cohen, R. M., Bunney, W. E., Jr., Ebert, M. H., & Kaye, W. (1982). Memory-learning impairments in progressive dementia and depression. American Journal of Psychiatry, 139(1), 135–136.

    PubMed  CAS  Google Scholar 

  • Weingartner, H., Grafman, J., Boutelle, W., Kaye, W., & Martin, P. (1983). Forms of memory failure. Science, 221, 380–382.

    PubMed  CAS  Google Scholar 

  • Welsh, K., Butters, N., Hughes, J., Mohs, R., & Heyman, A. (1991). Detection of abnormal memory decline in mild cases of Alzheimer’s disease using CERAD neuropsychological measures. Archives of Neurology, 48 (3), 278–281.

    PubMed  CAS  Google Scholar 

  • Welsh, K. A., N. Butters, Mohs, R. C., Beekly, D., Edland, S., Fillembaum, G., et al. (1994). The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD): A normative study of the neuropsychological battery. Neurology, 44(4), 609–614.

    PubMed  CAS  Google Scholar 

  • Westerberg, C. E., Paller, K. A., Weintraub, S., Mesulam, M. M., Holdstock, J. S., Mayes, A. R., et al. (2006). When memory does not fail: Familiarity-based recognition in mild cognitive impairment and Alzheimer’s disease. Neuropsychology, 20(2), 193–205.

    PubMed  Google Scholar 

  • Wixted, J. T., & Squire, L. R. (2004). Recall and recognition are equally impaired in patients with selective hippocampal damage. Cognitive, Affective & Behavioral Neuroscience, 4(1), 58–66.

    Article  Google Scholar 

  • Yonelinas, A. P. (1994). Receiver-operating characteristics in recognition memory: Evidence for a dual-process model. Journal of Experimental Psychology: Learning, Memory, & Cognition, 20(6), 1341–1354.

    CAS  Google Scholar 

  • Yonelinas, A. P. (1997). Recognition memory ROCs for item and associative information: The contribution of recollection and familiarity. Memory & Cognition, 25(6), 747–763.

    CAS  Google Scholar 

  • Yonelinas, A. P. (2001a). Consciousness, control, and confidence: The 3 Cs of recognition memory. Journal of Experimental Psychology: General, 130(3), 361–379.

    CAS  Google Scholar 

  • Yonelinas, A. P. (2001b). Components of episodic memory: The contribution of recollection and familiarity. Philosophical Transactions of the Royal Society of LondonSeries B: Biological Sciences, 356(1413), 1363–1374.

    PubMed  CAS  Google Scholar 

  • Yonelinas, A. P., Hopfinger, J. B., Buonocore, M. H., Kroll, N. E., & Baynes, K. (2001). Hippocampal, parahippocampal and occipital–temporal contributions to associative and item recognition memory: An fMRI study. Neuroreport, 12(2), 359–363.

    PubMed  CAS  Google Scholar 

  • Zakzanis, K. K. (1998). Quantitative evidence for neuroanatomic and neuropsychological markers in dementia of the Alzheimer’s type. Journal of Clinical & Experimental Neuropsychology, 20(2), 259–269.

    Article  CAS  Google Scholar 

  • Zola, S. M., Squire, L. R., Teng, E., Stefanacci, L., Buffalo, E. A., & Clark, R. E. (2000). Impaired recognition memory in monkeys after damage limited to the hippocampal region. Journal of Neuroscience, 20(1), 451–463.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgia Lowndes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lowndes, G., Savage, G. Early Detection of Memory Impairment in Alzheimer’s Disease: A Neurocognitive Perspective on Assessment. Neuropsychol Rev 17, 193–202 (2007). https://doi.org/10.1007/s11065-007-9032-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11065-007-9032-z

Keywords

Navigation