Skip to main content

Advertisement

Log in

Pathogenesis of Depression in Alzheimer’s Disease

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Depression is a prevalent occurrence among Alzheimer’s disease (AD) patients, yet its underlying mechanism remains unclear. Recent investigations have revealed that several pathophysiological changes associated with Alzheimer’s disease can lead to mood disorders. These alterations include irregularities in monoamine neurotransmitters, disruptions in glutamatergic synaptic transmission, neuro-inflammation, dysfunction within the hypothalamic-pituitary-adrenocortical (HPA) axis, diminished levels of brain-derived neurotrophic factor (BDNF), and hippocampal atrophy. This review consolidates research findings from pertinent fields to elucidate the mechanisms underlying depression in Alzheimer’s disease, aiming to provide valuable insights for the study of its mechanisms and clinical treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Kales HC, Gitlin LN, Lyketsos CG (2015) Assessment and management of behavioral and psychological symptoms of Dementia. BMJ 350:h369. https://doi.org/10.1136/bmj.h369

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lyketsos CG, Carrillo MC, Ryan JM, Khachaturian AS, Trzepacz P, Amatniek J, Cedarbaum J, Brashear R, Miller DS (2011) Neuropsychiatric symptoms in Alzheimer’s Disease. Alzheimers Dement 7:532–539. https://doi.org/10.1016/j.jalz.2011.05.2410

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhao QF, Tan L, Wang HF, Jiang T, Tan MS, Tan L, Xu W, Li JQ, Wang J, Lai TJ, Yu JT (2016) The prevalence of neuropsychiatric symptoms in Alzheimer’s Disease: systematic review and meta-analysis. J Affect Disord 190:264–271. https://doi.org/10.1016/j.jad.2015.09.069

    Article  PubMed  Google Scholar 

  4. Asmer MS, Kirkham J, Newton H, Ismail Z, Elbayoumi H, Leung RH, Seitz DP (2018) Meta-analysis of the prevalence of major depressive disorder among older adults with dementia. J Clin Psychiatry 79:17r11772. https://doi.org/10.4088/JCP.17r11772

    Article  PubMed  Google Scholar 

  5. Eikelboom WS, van den Berg E, Singleton EH, Baart SJ, Coesmans M, Leeuwis AE, Teunissen CE, van Berckel BNM, Pijnenburg YAL, Scheltens P, van der Flier WM, Ossenkoppele R, Papma JM (2021) Neuropsychiatric and cognitive symptoms across the Alzheimer disease clinical spectrum: cross-sectional and longitudinal associations. Neurology 97:e1276–e1287. https://doi.org/10.1212/WNL.0000000000012598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Miller DS, Robert P, Ereshefsky L, Adler L, Bateman D, Cummings J, DeKosky ST, Fischer CE, Husain M, Ismail Z, Jaeger J, Lerner AJ, Li A, Lyketsos CG, Manera V, Mintzer J, Moebius HJ, Mortby M, Meulien D, Pollentier S, Porsteinsson A, Rasmussen J, Rosenberg PB, Ruthirakuhan MT, Sano M, Zucchero Sarracini Z, Lanctôt KL (2021) Diagnostic criteria for apathy in neurocognitive disorders. Alzheimers Dement 17:1892–1904. https://doi.org/10.1002/alz.12358

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chen Y, Dang M, Zhang Z (2021) Brain mechanisms underlying neuropsychiatric symptoms in Alzheimer’s disease: a systematic review of symptom-general and -specific lesion patterns. Mol Neurodegener 16:38. https://doi.org/10.1186/s13024-021-00456-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ismail Z, Elbayoumi H, Fischer CE, Hogan DB, Millikin CP, Schweizer T, Mortby ME, Smith EE, Patten SB, Fiest KM (2017) Prevalence of depression in patients with mild cognitive impairment: a systematic review and meta-analysis. JAMA Psychiatry 74:58–67. https://doi.org/10.1001/jamapsychiatry.2016.3162

    Article  PubMed  Google Scholar 

  9. Wiels WA, Wittens MMJ, Zeeuws D, Baeken C, Engelborghs S (2021) Neuropsychiatric symptoms in mild cognitive impairment and dementia due to AD: relation with disease stage and cognitive deficits. Front Psychiatry 12:707580. https://doi.org/10.3389/fpsyt.2021.707580

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sun X, Steffens DC, Au R, Folstein M, Summergrad P, Yee J, Rosenberg I, Mwamburi DM, Qiu WQ (2008) Amyloid-associated depression: a prodromal depression of Alzheimer disease? Arch Gen Psychiatry 65:542–550. https://doi.org/10.1001/archpsyc.65.5.542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zubenko GS, Zubenko WN, McPherson S, Spoor E, Marin DB, Farlow MR, Smith GE, Geda YE, Cummings JL, Petersen RC, Sunderland T (2003) A collaborative study of the emergence and clinical features of the major depressive syndrome of Alzheimer’s disease. Am J Psychiatry 160:857–866

    Article  PubMed  Google Scholar 

  12. Modrego PJ (2010) Depression in Alzheimer’s Disease. Pathophysiology, diagnosis, and treatment. J Alzheimers Dis 21:1077–1087. https://doi.org/10.3233/jad-2010-100153

    Article  CAS  PubMed  Google Scholar 

  13. Kuring JK, Mathias JL, Ward L (2018) Prevalence of depression, anxiety and PTSD in people with dementia: a systematic review and meta-analysis. Neuropsychol Rev 28:393–416. https://doi.org/10.1007/s11065-018-9396-2

    Article  CAS  PubMed  Google Scholar 

  14. Novais F, Starkstein S (2015) Phenomenology of depression in Alzheimer’s disease. J Alzheimers Dis 47:845–855. https://doi.org/10.3233/JAD-148004

    Article  PubMed  Google Scholar 

  15. Mirza SS, Wolters FJ, Swanson SA, Koudstaal PJ, Hofman A, Tiemeier H, Ikram MA (2016) 10-Year trajectories of depressive symptoms and risk of dementia: a population-based study. Lancet Psychiatry 3:628–635. https://doi.org/10.1016/S2215-0366(16)00097-3

    Article  PubMed  Google Scholar 

  16. Johansson M, Stomrud E, Johansson PM, Svenningsson A, Palmqvist S, Janelidze S, van Westen D, Mattsson-Carlgren N, Hansson O (2022) Development of apathy, anxiety, and depression in cognitively unimpaired older adults: effects of Alzheimer’s disease pathology and cognitive decline. Biol Psychiatry 92:34–43. https://doi.org/10.1016/j.biopsych.2022.01.012

    Article  PubMed  Google Scholar 

  17. Galts CPC, Bettio LEB, Jewett DC, Yang CC, Brocardo PS, Rodrigues ALS, Thacker JS, Gil-Mohapel J (2019) Depression in neurodegenerative diseases: common mechanisms and current treatment options. Neurosci Biobehav Rev 102:56–84. https://doi.org/10.1016/j.neubiorev.2019.04.002

    Article  PubMed  Google Scholar 

  18. Linnemann C, Lang UE (2020) Pathways connecting late-life depression and dementia. Front Pharmacol 11:279. https://doi.org/10.3389/fphar.2020.00279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jiang Y, Zou D, Li Y, Gu S, Dong J, Ma X, Xu S, Wang F, Huang JH (2022) Monoamine neurotransmitters control basic emotions and affect major depressive disorders. Pharmaceuticals (Basel) 15:1203. https://doi.org/10.3390/ph15101203

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ślifirski G, Król M, Turło J (2021) 5-HT receptors and the development of new antidepressants. Int J Mol Sci 22:9015. https://doi.org/10.3390/ijms22169015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Moncrieff J, Cooper RE, Stockmann T, Amendola S, Hengartner MP, Horowitz MA (2023) The serotonin theory of depression: a systematic umbrella review of the evidence. Mol Psychiatry 28:3243–3256. https://doi.org/10.1038/s41380-022-01661-0

    Article  PubMed  PubMed Central  Google Scholar 

  22. Erritzoe D, Godlewska BR, Rizzo G, Searle GE, Agnorelli C, Lewis Y, Ashok AH, Colasanti A, Boura I, Farrell C, Parfitt H, Howes O, Passchier J, Gunn RN, Politis M, Nutt DJ, Cowen PJ, Knudsen GM, Rabiner EA (2023) Brain serotonin release is reduced in patients with depression: a [(11)C]cimbi-36 positron emission tomography study with a d-amphetamine challenge. Biol Psychiatry 93:1089–1098. https://doi.org/10.1016/j.biopsych.2022.10.012

    Article  CAS  PubMed  Google Scholar 

  23. Haleem DJ (2022) Glucocorticoids in the physiological and transcriptional regulation of 5-HT1A receptor and the pathogenesis of depression. Neuroscientist 28:59–68. https://doi.org/10.1177/1073858420975711

    Article  CAS  PubMed  Google Scholar 

  24. Martín-Hernández D, Pereira MP, Tendilla-Beltrán H, Madrigal JLM, García-Bueno B, Leza JC, Caso JR (2019) Modulation of monoaminergic systems by antidepressants in the frontal cortex of rats after chronic mild stress exposure. Mol Neurobiol 56:7522–7533. https://doi.org/10.1007/s12035-019-1619-x

    Article  CAS  PubMed  Google Scholar 

  25. Roberts C, Sahakian BJ, Robbins TW (2020) Psychological mechanisms and functions of 5-HT and SSRIs in potential therapeutic change: lessons from the serotonergic modulation of action selection, learning, affect, and social cognition. Neurosci Biobehav Rev 119:138–167. https://doi.org/10.1016/j.neubiorev.2020.09.001

    Article  PubMed  Google Scholar 

  26. Zweig RM, Ross CA, Hedreen JC, Steele C, Cardillo JE, Whitehouse PJ, Folstein MF, Price DL (1989) Neuropathology of aminergic nuclei in Alzheimer’s disease. Prog Clin Biol Res 317:353–365

    CAS  PubMed  Google Scholar 

  27. Krashia P, Nobili A, D’Amelio M (2019) Unifying hypothesis of dopamine neuron loss in neurodegenerative diseases: focusing on Alzheimer’s disease. Front Mol Neurosci 12:123. https://doi.org/10.3389/fnmol.2019.00123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Krashia P, Spoleti E, D’Amelio M (2022) The VTA dopaminergic system a diagnostic and therapeutical target for Alzheimer’s disease. Front Psychiatry 13:1039725. https://doi.org/10.3389/fpsyt.2022.1039725

    Article  PubMed  PubMed Central  Google Scholar 

  29. Truchot L, Costes N, Zimmer L, Laurent B, Le Bars D, Thomas-Antérion C, Mercier B, Hermier M, Vighetto A, Krolak-Salmon PA (2008) Distinct [18F]MPPF PET profile in amnestic mild cognitive impairment compared to mild Alzheimer’s disease. NeuroImage 40:1251–1256. https://doi.org/10.1016/j.neuroimage.2008.01.030

    Article  CAS  PubMed  Google Scholar 

  30. Gannon M, Che P, Chen Y, Jiao K, Roberson ED, Wang Q (2015) Noradrenergic dysfunction in Alzheimer’s disease. Front Neurosci 9:220. https://doi.org/10.3389/fnins.2015.00220

    Article  PubMed  PubMed Central  Google Scholar 

  31. Xu Y, Yan J, Zhou P, Li J, Gao H, Xia Y, Wang Q (2012) Neurotransmitter receptors and cognitive dysfunction in Alzheimer’s disease and Parkinson’s disease. Prog Neurobiol 97:1–13. https://doi.org/10.1016/j.pneurobio.2012.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu Y, Yoo MJ, Savonenko A, Stirling W, Price DL, Borchelt DR, Mamounas L, Lyons WE, Blue ME, Lee MK (2008) Amyloid pathology is associated with progressive monoaminergic neurodegeneration in a transgenic mouse model of Alzheimer’s disease. J Neurosci 28:13805–13814. https://doi.org/10.1523/jneurosci.4218-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Caraci F, Copani A, Nicoletti F, Drago F (2010) Depression and Alzheimer’s disease: neurobiological links and common pharmacological targets. Eur J Pharmacol 626:64–71. https://doi.org/10.1016/j.ejphar.2009.10.022

    Article  CAS  PubMed  Google Scholar 

  34. Ledo JH, Azevedo EP, Clarke JR, Ribeiro FC, Figueiredo CP, Foguel D, De Felice FG, Ferreira ST (2013) Amyloid-β oligomers link depressive-like behavior and cognitive deficits in mice. Mol Psychiatry 18:1053–1054. https://doi.org/10.1038/mp.2012.168

    Article  CAS  PubMed  Google Scholar 

  35. Ledo JH, Azevedo EP, Beckman D, Ribeiro FC, Santos LE, Razolli DS, Kincheski GC, Melo HM, Bellio M, Teixeira AL, Velloso LA, Foguel D, De Felice FG, Ferreira ST (2016) Cross talk between brain innate immunity and serotonin signaling underlies depressive-like behavior induced by Alzheimer’s amyloid-β oligomers in mice. J Neurosci 36:12106–12116. https://doi.org/10.1523/JNEUROSCI.1269-16.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nazarali AJ, Reynolds GP (1992) Monoamine neurotransmitters and their metabolites in brain regions in Alzheimer’s disease: a postmortem study. Cell Mol Neurobiol 12:581–587. https://doi.org/10.1007/BF00711237

    Article  CAS  PubMed  Google Scholar 

  37. Garcia-Alloza M, Tsang SW, Gil-Bea FJ, Francis PT, Lai MK, Marcos B, Chen CP, Ramirez MJ (2006) Involvement of the GABAergic system in depressive symptoms of Alzheimer’s disease. Neurobiol Aging 27:1110–1117. https://doi.org/10.1016/j.neurobiolaging.2005.06.003

    Article  CAS  PubMed  Google Scholar 

  38. Ancoli-Israel S, Klauber MR, Gillin JC, Campbell SS, Hofstetter CR (1994) Sleep in non-institutionalized Alzheimer’s disease patients. Aging (Milano) 6:451–458. https://doi.org/10.1007/bf03324277

    Article  CAS  PubMed  Google Scholar 

  39. Lin CH, Huang MW, Lin CH, Huang CH, Lane HY (2019) Altered mRNA expressions for N-methyl-D-aspartate receptor-related genes in WBC of patients with major depressive disorder. J Affect Disord 245:1119–1125. https://doi.org/10.1016/j.jad.2018.12.016

    Article  CAS  PubMed  Google Scholar 

  40. Simic G, Stanic G, Mladinov M, Jovanov-Milosevic N, Kostovic I, Hof PR (2009) Does Alzheimer’s disease begin in the brainstem? Neuropathol Appl Neurobiol 35:532–554. https://doi.org/10.1111/j.1365-2990.2009.01038.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Šimić G, Babić Leko M, Wray S, Harrington CR, Delalle I, Jovanov-Milošević N, Bažadona D, Buée L, de Silva R, Di Giovanni G, Wischik CM, Hof PR (2017) Monoaminergic neuropathology in Alzheimer’s disease. Prog Neurobiol 151:101–138. https://doi.org/10.1016/j.pneurobio.2016.04.001

    Article  CAS  PubMed  Google Scholar 

  42. Roh JH, Huang Y, Bero AW, Kasten T, Stewart FR, Bateman RJ, Holtzman DM (2012) Disruption of the sleep-wake cycle and diurnal fluctuation of β-amyloid in mice with Alzheimer’s disease pathology. Sci Transl Med 4:150ra122. https://doi.org/10.1126/scitranslmed.3004291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sterniczuk R, Dyck RH, Laferla FM, Antle MC (2010) Characterization of the 3xTg-AD mouse model of Alzheimer’s disease: part 1. Circadian changes. Brain Res 1348:139–148. https://doi.org/10.1016/j.brainres.2010.05.013

    Article  CAS  PubMed  Google Scholar 

  44. Bondareff W, Mountjoy CQ, Roth M (1982) Loss of neurons of origin of the adrenergic projection to cerebral cortex (nucleus locus ceruleus) in senile dementia. Neurology 32:164–168. https://doi.org/10.1212/wnl.32.2.164

    Article  CAS  PubMed  Google Scholar 

  45. Iversen LL, Rossor MN, Reynolds GP, Hills R, Roth M, Mountjoy CQ, Foote SL, Morrison JH, Bloom FE (1983) Loss of pigmented dopamine-beta-hydroxylase positive cells from locus coeruleus in senile dementia of Alzheimer’s type. Neurosci Lett 39:95–100. https://doi.org/10.1016/0304-3940(83)90171-4

    Article  CAS  PubMed  Google Scholar 

  46. Iversen SD, Iversen LL, Dopamine (2007) 50 years in perspective. Trends Neurosci 30:188–193. https://doi.org/10.1016/j.tins.2007.03.002

    Article  CAS  PubMed  Google Scholar 

  47. Trillo L, Das D, Hsieh W, Medina B, Moghadam S, Lin B, Dang V, Sanchez MM, De Miguel Z, Ashford JW, Salehi A (2013) Ascending monoaminergic systems alterations in Alzheimer’s disease. Translating basic science into clinical care. Neurosci Biobehav Rev 37:1363–1379. https://doi.org/10.1016/j.neubiorev.2013.05.008

    Article  CAS  PubMed  Google Scholar 

  48. Gloria Y, Ceyzériat K, Tsartsalis S, Millet P, Tournier BB (2021) Dopaminergic dysfunction in the 3xTg-AD mice model of Alzheimer’s disease. Sci Rep 11:19412. https://doi.org/10.1038/s41598-021-99025-1

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  49. Storga D, Vrecko K, Birkmayer JG, Reibnegger G (1996) Monoaminergic neurotransmitters, their precursors and metabolites in brains of Alzheimer patients. Neurosci Lett 203:29–32. https://doi.org/10.1016/0304-3940(95)12256-7

    Article  CAS  PubMed  Google Scholar 

  50. Moreno-Castilla P, Rodriguez-Duran LF, Guzman-Ramos K, Barcenas-Femat A, Escobar ML, Bermudez-Rattoni F (2016) Dopaminergic neurotransmission dysfunction induced by amyloid-β transforms cortical long-term potentiation into long-term depression and produces memory impairment. Neurobiol Aging 41:187–199. https://doi.org/10.1016/j.neurobiolaging.2016.02.021

    Article  CAS  PubMed  Google Scholar 

  51. Holmes C, Smith H, Ganderton R, Arranz M, Collier D, Powell J, Lovestone S (2001) Psychosis and aggression in Alzheimer’s disease: the effect of dopamine receptor gene variation. J Neurol Neurosurg Psychiatry 71:777–779. https://doi.org/10.1136/jnnp.71.6.777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Borroni B, Archetti S, Costanzi C, Grassi M, Ferrari M, Radeghieri A, Caimi L, Caltagirone C, Di Luca M, Padovani A (2009) Role of BDNF Val66Met functional polymorphism in Alzheimer’s disease-related depression. Neurobiol Aging 30:1406–1412. https://doi.org/10.1016/j.neurobiolaging.2007.11.023

    Article  CAS  PubMed  Google Scholar 

  53. Nobili A, La Barbera L, D’Amelio M (2021) Targeting autophagy as a therapeutic strategy to prevent dopamine neuron loss in early stages of Alzheimer disease. Autophagy 17:1278–1280. https://doi.org/10.1080/15548627.2021.1909409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Martorana A, Koch G (2014) Is dopamine involved in Alzheimer’s disease? Front Aging Neurosci 6:252. https://doi.org/10.3389/fnagi.2014.00252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Stefani A, Olivola E, Liguori C, Hainsworth AH, Saviozzi V, Angileri G, Angelo V, Galati S, Pierantozzi M (2015) Catecholamine-based treatment in AD patients: expectations and delusions. Front Aging Neurosci 7:67. https://doi.org/10.3389/fnagi.2015.00067

    Article  PubMed  PubMed Central  Google Scholar 

  56. Babaei P (2021) NMDA and AMPA receptors dysregulation in Alzheimer’s disease. Eur J Pharmacol 908:174310. https://doi.org/10.1016/j.ejphar.2021.174310

    Article  CAS  PubMed  Google Scholar 

  57. Li S, Hong S, Shepardson NE, Walsh DM, Shankar GM, Selkoe D (2009) Soluble oligomers of amyloid beta protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake. Neuron 62:788–801. https://doi.org/10.1016/j.neuron.2009.05.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ma H, Li C, Wang J, Zhang X, Li M, Zhang R, Huang Z, Zhang Y (2021) Amygdala-hippocampal innervation modulates stress-induced depressive-like behaviors through AMPA receptors. Proc Natl Acad Sci U S A 118:e2019409118. https://doi.org/10.1073/pnas.2019409118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bleakman D, Alt A, Witkin JM (2007) AMPA receptors in the therapeutic management of depression. CNS Neurol Disord Drug Targets 6:117–126. https://doi.org/10.2174/187152707780363258

    Article  CAS  PubMed  Google Scholar 

  60. Baglietto-Vargas D, Prieto GA, Limon A, Forner S, Rodriguez-Ortiz CJ, Ikemura K, Ager RR, Medeiros R, Trujillo-Estrada L, Martini AC, Kitazawa M, Davila JC, Cotman CW, Gutierrez A, LaFerla FM (2018) Impaired AMPA signaling and cytoskeletal alterations induce early synaptic dysfunction in a mouse model of Alzheimer’s disease. Aging Cell 17:e12791. https://doi.org/10.1111/acel.12791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Guntupalli S, Jang SE, Zhu T, Huganir RL, Widagdo J, Anggono V (2017) GluA1 subunit ubiquitination mediates amyloid-β-induced loss of surface α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. J Biol Chem 292:8186–8194. https://doi.org/10.1074/jbc.M116.774554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Parsons MP, Raymond LA (2014) Extrasynaptic NMDA receptor involvement in central nervous system disorders. Neuron 82:279–293. https://doi.org/10.1016/j.neuron.2014.03.030

    Article  CAS  PubMed  Google Scholar 

  63. Lin R, Cai J, Kenyon L, Iozzo R, Rosenwasser R, Iacovitti L (2019) Systemic factors trigger vasculature cells to drive notch signaling and neurogenesis in neural stem cells in the adult brain. Stem Cells 37:395–406. https://doi.org/10.1002/stem.2947

    Article  PubMed  Google Scholar 

  64. Wang HQ, Wang ZZ, Chen NH (2021) The receptor hypothesis and the pathogenesis of depression: genetic bases and biological correlates. Pharmacol Res 167:105542. https://doi.org/10.1016/j.phrs.2021.105542

    Article  CAS  PubMed  Google Scholar 

  65. Madeira C, Vargas-Lopes C, Brandão CO, Reis T, Laks J, Panizzutti R, Ferreira ST (2018) Elevated glutamate and glutamine levels in the cerebrospinal fluid of patients with probable Alzheimer’s disease and depression. Front Psychiatry 9:561. https://doi.org/10.3389/fpsyt.2018.00561

    Article  PubMed  PubMed Central  Google Scholar 

  66. Taylor CJ, He R, Bartlett PF (2014) The role of the N-methyl-D-aspartate receptor in the proliferation of adult hippocampal neural stem and precursor cells. Sci China Life Sci 57:403–411. https://doi.org/10.1007/s11427-014-4637-y

    Article  CAS  PubMed  Google Scholar 

  67. Dutta A, McKie S, Deakin JFW (2015) Ketamine and other potential glutamate antidepressants. Psychiatry Res 225:1–13. https://doi.org/10.1016/j.psychres.2014.10.028

    Article  CAS  PubMed  Google Scholar 

  68. Smalheiser NR, Ketamine (2019) A neglected therapy for Alzheimer disease. Front Aging Neurosci 11:186. https://doi.org/10.3389/fnagi.2019.00186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tiger M, Veldman ER, Ekman CJ, Halldin C, Svenningsson P, Lundberg J (2020) A randomized placebo-controlled PET study of ketamine´s effect on serotonin(1B) receptor binding in patients with SSRI-resistant depression. Transl Psychiatry 10:159. https://doi.org/10.1038/s41398-020-0844-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Xie L, Zhang N, Zhang Q, Li C, Sandhu AF, Iii GW, Lin S, Lv P, Liu Y, Wu Q, Yu S (2020) Inflammatory factors and amyloid β-induced microglial polarization promote inflammatory crosstalk with astrocytes. Aging 12:22538–22549. https://doi.org/10.18632/aging.103663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Miller AH, Maletic V, Raison CL (2009) Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry 65:732–741. https://doi.org/10.1016/j.biopsych.2008.11.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wohleb ES, Franklin T, Iwata M, Duman RS (2016) Integrating neuroimmune systems in the neurobiology of depression. Nat Rev Neurosci 17:497–511. https://doi.org/10.1038/nrn.2016.69

    Article  CAS  PubMed  Google Scholar 

  73. Köhler CA, Freitas TH, Maes M, de Andrade NQ, Liu CS, Fernandes BS, Stubbs B, Solmi M, Veronese N, Herrmann N, Raison CL, Miller BJ, Lanctôt KL, Carvalho AF (2017) Peripheral cytokine and chemokine alterations in depression: a meta-analysis of 82 studies. Acta Psychiatr Scand 135:373–387. https://doi.org/10.1111/acps.12698

    Article  CAS  PubMed  Google Scholar 

  74. Caraci F, Spampinato SF, Morgese MG, Tascedda F, Salluzzo MG, Giambirtone MC, Caruso G, Munafò A, Torrisi SA, Leggio GM, Trabace L, Nicoletti F, Drago F, Sortino MA, Copani A (2018) Neurobiological links between depression and AD: the role of TGF-β1 signaling as a new pharmacological target. Pharmacol Res 130:374–384. https://doi.org/10.1016/j.phrs.2018.02.007

    Article  CAS  PubMed  Google Scholar 

  75. Zhang J, He H, Qiao Y, Zhou T, He H, Yi S, Zhang L, Mo L, Li Y, Jiang W, You Z (2020) Priming of microglia with IFN-γ impairs adult hippocampal neurogenesis and leads to depression-like behaviors and cognitive defects. Glia 68:2674–2692. https://doi.org/10.1002/glia.23878

    Article  PubMed  Google Scholar 

  76. Hamon M, Blier P (2013) Monoamine neurocircuitry in depression and strategies for new treatments. Prog Neuropsychopharma Biol Psychiatry 45:54–63. https://doi.org/10.1016/j.pnpbp.2013.04.009

    Article  CAS  Google Scholar 

  77. Ruhé HG, Mason NS, Schene AH (2007) Mood is indirectly related to serotonin, norepinephrine and dopamine levels in humans: a meta-analysis of monoamine depletion studies. Mol Psychiatry 12:331–359. https://doi.org/10.1038/sj.mp.4001949

    Article  CAS  PubMed  Google Scholar 

  78. Haenisch B, Bilkei-Gorzo A, Caron MG, Bönisch H (2009) Knockout of the norepinephrine transporter and pharmacologically diverse antidepressants prevent behavioral and brain neurotrophin alterations in two chronic stress models of depression. J Neurochem 111:403–416. https://doi.org/10.1111/j.1471-4159.2009.06345.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Jacobsen JP, Siesser WB, Sachs BD, Peterson S, Cools MJ, Setola V, Folgering JH, Flik G, Caron MG (2012) Deficient serotonin neurotransmission and depression-like serotonin biomarker alterations in tryptophan hydroxylase 2 (Tph2) loss-of-function mice. Mol Psychiatry 17:694–704. https://doi.org/10.1038/mp.2011.50

    Article  CAS  PubMed  Google Scholar 

  80. Schipke CG, Heuser I, Peters O (2011) Antidepressants act on glial cells: SSRIs and serotonin elicit astrocyte calcium signaling in the mouse prefrontal cortex. J Psychiatr Res 45:242–248. https://doi.org/10.1016/j.jpsychires.2010.06.005

    Article  PubMed  Google Scholar 

  81. Kohl Z, Ben Abdallah N, Vogelgsang J, Tischer L, Deusser J, Amato D, Anderson S, Müller CP, Riess O, Masliah E, Nuber S, Winkler J (2016) Severely impaired hippocampal neurogenesis associates with an early serotonergic deficit in a BAC α-synuclein transgenic rat model of Parkinson’s disease. Neurobiol Dis 85:206–217. https://doi.org/10.1016/j.nbd.2015.10.021

    Article  CAS  PubMed  Google Scholar 

  82. Castaño A, Herrera AJ, Cano J, Machado A (1998) Lipopolysaccharide intranigral injection induces inflammatory reaction and damage in nigrostriatal dopaminergic system. J Neurochem 70:1584–1592. https://doi.org/10.1046/j.1471-4159.1998.70041584.x

    Article  PubMed  Google Scholar 

  83. Gratacòs M, Soria V, Urretavizcaya M, González JR, Crespo JM, Bayés M, de Cid R, Menchón JM, Vallejo J, Estivill X (2008) A brain-derived neurotrophic factor (BDNF) haplotype is associated with antidepressant treatment outcome in mood disorders. Pharmacogenomics J 8:101–112. https://doi.org/10.1038/sj.tpj.6500460

    Article  CAS  PubMed  Google Scholar 

  84. Snyder JS, Soumier A, Brewer M, Pickel J, Cameron HA (2011) Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature 476:458–461. https://doi.org/10.1038/nature10287

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  85. van den Ameele S, Fuchs D, Coppens V, de Boer P, Timmers M, Sabbe B, Morrens M (2018) Markers of inflammation and monoamine metabolism indicate accelerated aging in bipolar disorder. Front Psychiatry 9:250. https://doi.org/10.3389/fpsyt.2018.00250

    Article  PubMed  PubMed Central  Google Scholar 

  86. Bauer ME, Teixeira AL (2019) Inflammation in psychiatric disorders: what comes first? Ann N Y Acad Sci 1437:57–67. https://doi.org/10.1111/nyas.13712

    Article  CAS  PubMed  ADS  Google Scholar 

  87. Mouihate A (2014) TLR4-mediated Brain Inflammation halts neurogenesis: impact of hormonal replacement therapy. Front Cell Neurosci 8:146. https://doi.org/10.3389/fncel.2014.00146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hayley S, Hakim AM, Albert PR (2021) Depression, dement immune dysregulation. Brain 144:746–760. https://doi.org/10.1093/brain/awaa405

    Article  PubMed  Google Scholar 

  89. Amani M, Shokouhi G, Salari AA (2019) Minocycline prevents the development of depression-like behavior and hippocampal inflammation in a rat model of Alzheimer’s disease. Psychopharmacology 236:1281–1292. https://doi.org/10.1007/s00213-018-5137-8

    Article  CAS  PubMed  Google Scholar 

  90. Morgese MG, Schiavone S, Bove M, Mhillaj E, Tucci P, Trabace L (2018) Sub-chronic celecoxib prevents soluble beta amyloid-induced depressive-like behaviour in rats. J Affect Disord 238:118–121. https://doi.org/10.1016/j.jad.2018.05.030

    Article  CAS  PubMed  Google Scholar 

  91. Wyss-Coray T, Lin C, Yan F, Yu GQ, Rohde M, McConlogue L, Masliah E, Mucke L (2001) TGF-beta1 promotes microglial amyloid-beta clearance and reduces plaque burden in transgenic mice. Nat Med 7:612–618. https://doi.org/10.1038/87945

    Article  CAS  PubMed  Google Scholar 

  92. Caruso G, Fresta CG, Musso N, Giambirtone M, Grasso M, Spampinato SF, Merlo S, Drago F, Lazzarino G, Sortino MA, Lunte SM, Caraci F (2019) Carnosine prevents Aβ-induced oxidative stress and inflammation in microglial cells: a key role of TGF-β1. Cells 8:64. https://doi.org/10.3390/cells8010064

    Article  PubMed  PubMed Central  Google Scholar 

  93. Torrisi SA, Geraci F, Tropea MR, Grasso M, Caruso G, Fidilio A, Musso N, Sanfilippo G, Tascedda F, Palmeri A, Salomone S, Drago F, Puzzo D, Leggio GM, Caraci F (2019) Fluoxetine and vortioxetine reverse depressive-like phenotype and memory deficits induced by Aβ(1–42) oligomers in mice: a key role of transforming growth factor-β1. Front Pharmacol 10:693. https://doi.org/10.3389/fphar.2019.00693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Abu-Elfotuh K, Al-Najjar AH, Mohammed AA, Aboutaleb AS, Badawi GA (2022) Fluoxetine ameliorates Alzheimer’s disease progression and prevents the exacerbation of cardiovascular dysfunction of socially isolated depressed rats through activation of Nrf2/HO-1 and hindering TLR4/NLRP3 inflammasome signaling pathway. Int Immunopharmacol 104:108488. https://doi.org/10.1016/j.intimp.2021.108488

    Article  CAS  PubMed  Google Scholar 

  95. Milligan AA, Porter T, Quek H, White A, Haynes J, Jackaman C, Villemagne V, Munyard K, Laws SM, Verdile G, Groth D (2021) Chronic stress and Alzheimer’s disease: the interplay between the hypothalamic-pituitary-adrenal axis, genetics and microglia. Biol Rev Camb Philos Soc 96:2209–2228. https://doi.org/10.1111/brv.12750

    Article  CAS  Google Scholar 

  96. Barca ML, Eldholm RS, Persson K, Bjorklof GH, Borza T, Telenius E, Knapskog AB, Braekhus A, Saltvedt I, Selbaek G, Engedal K (2019) Cortisol levels among older people with and without depression and dementia. Int Psychogeriatr 31:597–601. https://doi.org/10.1017/S1041610218001199

    Article  PubMed  Google Scholar 

  97. Ouanes S, Rabl M, Clark C, Kirschbaum C, Popp J (2022) Persisting neuropsychiatric symptoms, Alzheimer’s disease, and cerebrospinal fluid cortisol and dehydroepiandrosterone sulfate. Alzheimers Res Ther 14:190. https://doi.org/10.1186/s13195-022-01139-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Joëls M, Sarabdjitsingh RA, Karst H (2012) Unraveling the time domains of corticosteroid hormone influences on brain activity: rapid, slow, and chronic modes. Pharmacol Rev 64:901–938. https://doi.org/10.1124/pr.112.005892

    Article  CAS  PubMed  Google Scholar 

  99. Herbert J, Lucassen PJ (2016) Depression as a risk factor for Alzheimer’s disease: genes, steroids, cytokines and neurogenesis—what do we need to know? Front Neuroendocrinol 41:153–171. https://doi.org/10.1016/j.yfrne.2015.12.001

    Article  CAS  PubMed  Google Scholar 

  100. Watermeyer T, Robb C, Gregory S, Udeh-Momoh C (2021) Therapeutic implications of hypothalamic-pituitaryadrenal-axis modulation in Alzheimer’s disease: a narrative review of pharmacological and lifestyle interventions. Front Neuroendocrinol 60:100877. https://doi.org/10.1016/j.yfrne.2020.100877

    Article  CAS  PubMed  Google Scholar 

  101. Pedrazzoli M, Losurdo M, Paolone G, Medelin M, Jaupaj L, Cisterna B, Slanzi A, Malatesta M, Coco S, Buffelli M (2019) Glucocorticoid receptors modulate dendritic spine plasticity and microglia activity in an animal model of Alzheimer’s disease. Neurobiol Dis 132:104568. https://doi.org/10.1016/j.nbd.2019.104568

    Article  CAS  PubMed  Google Scholar 

  102. Popova NK, Naumenko VS (2019) Neuronal and behavioral plasticity: the role of serotonin and BDNF systems tandem. Expert Opin Ther Targets 23:227–239. https://doi.org/10.1080/14728222.2019.1572747

    Article  CAS  PubMed  Google Scholar 

  103. Fukumoto K, Fogaça MV, Liu RJ, Duman CH, Li XY, Chaki S, Duman RS (2020) Medial PFC AMPA receptor and BDNF signaling are required for the rapid and sustained antidepressant-like effects of 5-HT(1A) receptor stimulation. Neuropsychopharmacology 45:1725–1734. https://doi.org/10.1038/s41386-020-0705-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Leschik J, Gentile A, Cicek C, Péron S, Tevosian M, Beer A, Radyushkin K, Bludau A, Ebner K, Neumann I, Singewald N, Berninger B, Lessmann V, Lutz B (2022) Brain-derived neurotrophic factor expression in serotonergic neurons improves stress resilience and promotes adult hippocampal neurogenesis. Prog Neurobiol 217:102333. https://doi.org/10.1016/j.pneurobio.2022.102333

    Article  CAS  PubMed  Google Scholar 

  105. Oh H, Piantadosi SC, Rocco BR, Lewis DA, Watkins SC, Sibille E (2019) The role of dendritic brain-derived neurotrophic factor transcripts on altered inhibitory circuitry in depression. Biol Psychiatry 85:517–526. https://doi.org/10.1016/j.biopsych.2018.09.026

    Article  CAS  PubMed  Google Scholar 

  106. Bakusic J, Vrieze E, Ghosh M, Pizzagalli DA, Bekaert B, Claes S, Godderis L (2021) Interplay of Val66Met and BDNF methylation: effect on reward learning and cognitive performance in major depression. Clin Epigenetics 13:149. https://doi.org/10.1186/s13148-021-01136-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wang ZH, Xiang J, Liu X, Yu SP, Manfredsson FP, Sandoval IM, Wu S, Wang JZ, Ye K (2019) Deficiency in BDNF/TrkB neurotrophic activity stimulates δ-Secretase by upregulating C/EBPβ in Alzheimer’s disease. Cell Rep 28:655.e5–669.e5. https://doi.org/10.1016/j.celrep.2019.06.054

    Article  CAS  Google Scholar 

  108. Nagahara AH, Merrill DA, Coppola G, Tsukada S, Schroeder BE, Shaked GM, Wang L, Blesch A, Kim A, Conner JM, Rockenstein E, Chao MV, Koo EH, Geschwind D, Masliah E, Chiba AA, Tuszynski MH (2009) Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer’s disease. Nat Med 15:331–337. https://doi.org/10.1038/nm.1912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Nunes PV, Nascimento CF, Kim HK, Andreazza AC, Brentani HP, Suemoto CK, Leite REP, Ferretti-Rebustini REL, Pasqualucci CA, Nitrini R, Grinberg LT, Yong LT, Jacob-Filho W, Lafer B (2018) Low brain-derived neurotrophic factor levels in post-mortem brains of older adults with depression and dementia in a large clinicopathological sample. J Affect Disord 241:176–181. https://doi.org/10.1016/j.jad.2018.08.025

    Article  CAS  PubMed  Google Scholar 

  110. Colaianna M, Tucci P, Zotti M, Morgese MG, Schiavone S, Govoni S, Cuomo V, Trabace L (2010) Soluble beta amyloid(1–42): a critical player in producing behavioural and biochemical changes evoking depressive-related state? Br J Pharmacol 159:1704–1715. https://doi.org/10.1111/j.1476-5381.2010.00669.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Schiavone S, Tucci P, Mhillaj E, Bove M, Trabace L, Morgese MG (2017) Antidepressant drugs for beta amyloid-induced depression: a new standpoint? Prog Neuropsychopharmacol Biol Psychiatry 78:114–122. https://doi.org/10.1016/j.pnpbp.2017.05.004

    Article  CAS  PubMed  Google Scholar 

  112. Czéh B, Lucassen PJ (2007) What causes the hippocampal volume decrease in depression? Are neurogenesis, glial changes and apoptosis implicated? Eur Arch Psychiatry Clin Neurosci 257:250–260. https://doi.org/10.1007/s00406-007-0728-0

    Article  PubMed  Google Scholar 

  113. MacQueen G, Frodl T (2011) The hippocampus in major depression: evidence for the convergence of the bench and bedside in psychiatric research? Mol Psychiatry 16:252–264. https://doi.org/10.1038/mp.2010.80

    Article  CAS  PubMed  Google Scholar 

  114. Duman RS, Aghajanian GK (2012) Synaptic dysfunction in depression: potential therapeutic targets. Science 338:68–72. https://doi.org/10.1126/science.1222939

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  115. Price RB, Duman R (2020) Neuroplasticity in cognitive and psychological mechanisms of depression: an integrative model. Mol Psychiatry 25:530–543. https://doi.org/10.1038/s41380-019-0615-x

    Article  PubMed  Google Scholar 

  116. Boldrini M, Santiago AN, Hen R, Dwork AJ, Rosoklija GB, Tamir H, Arango V, John MJ (2013) Hippocampal granule neuron number and dentate gyrus volume in antidepressant-treated and untreated major depression. Neuropsychopharmacology 38:1068–1077. https://doi.org/10.1038/npp.2013.5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Halliday G (2017) Pathology and hippocampal atrophy in Alzheimer’s disease. Lancet Neurol 16:862–864. https://doi.org/10.1016/S1474-4422(17)30343-5

    Article  PubMed  Google Scholar 

  118. Stein JL, Medland SE, Vasquez AA, Hibar DP, Senstad RE, Winkler AM, Toro R, Appel K, Bartecek R, Bergmann Ø, Bernard M, Brown AA, Cannon DM, Chakravarty MM, Christoforou A, Domin M, Grimm O, Hollinshead M, Holmes AJ, Homuth G, Hottenga JJ, Langan C, Lopez LM, Hansell NK, Hwang KS, Kim S, Laje G, Lee PH, Liu X, Loth E, Lourdusamy A, Mattingsdal M, Mohnke S, Maniega SM, Nho K, Nugent AC, O'Brien C, Papmeyer M, Pütz B, Ramasamy A, Rasmussen J, Rijpkema M, Risacher SL, Roddey JC, Rose EJ, Ryten M, Shen L, Sprooten E, Strengman E, Teumer A, Trabzuni D, Turner J, van Eijk K, van Erp TG, van Tol MJ, Wittfeld K, Wolf C, Woudstra S, Aleman A, Alhusaini S, Almasy L, Binder EB, Brohawn DG, Cantor RM, Carless MA, Corvin A, Czisch M, Curran JE, Davies G, de Almeida MA, Delanty N, Depondt C, Duggirala R, Dyer TD, Erk S, Fagerness J, Fox PT, Freimer NB, Gill M, Göring HH, Hagler DJ, Hoehn D, Holsboer F, Hoogman M, Hosten N, Jahanshad N, Johnson MP, Kasperaviciute D, Kent JW Jr, Kochunov P, Lancaster JL, Lawrie SM, Liewald DC, Mandl R, Matarin M, Mattheisen M, Meisenzahl E, Melle I, Moses EK, Mühleisen TW, Nauck M, Nöthen MM, Olvera RL, Pandolfo M, Pike GB, Puls R, Reinvang I, Rentería ME, Rietschel M, Roffman JL, Royle NA, Rujescu D, Savitz J, Schnack HG, Schnell K, Seiferth N, Smith C, Steen VM, Valdés Hernández MC, Van den Heuvel M, van der Wee NJ, Van Haren NE, Veltman JA, Völzke H, Walker R, Westlye LT, Whelan CD, Agartz I, Boomsma DI, Cavalleri GL, Dale AM, Djurovic S, Drevets WC, Hagoort P, Hall J, Heinz A, Jack CR Jr, Foroud TM, Le Hellard S, Macciardi F, Montgomery GW, Poline JB, Porteous DJ, Sisodiya SM, Starr JM, Sussmann J, Toga AW, Veltman DJ, Walter H, Weiner MW, Bis JC, Ikram MA, Smith AV, Gudnason V, Tzourio C, Vernooij MW, Launer LJ, DeCarli C, Seshadri S, Andreassen OA, Apostolova LG, Bastin ME, Blangero J, Brunner HG, Buckner RL, Cichon S, Coppola G, de Zubicaray GI, Deary IJ, Donohoe G, de Geus EJ, Espeseth T, Fernández G, Glahn DC, Grabe HJ, Hardy J, Hulshoff Pol HE, Jenkinson M, Kahn RS, McDonald C, McIntosh AM, McMahon FJ, McMahon KL, Meyer-Lindenberg A, Morris DW, Müller-Myhsok B, Nichols TE, Ophoff RA, Paus T, Pausova Z, Penninx BW, Potkin SG, Sämann PG, Saykin AJ, Schumann G, Smoller JW, Wardlaw JM, Weale ME, Martin NG, Franke B, Wright MJ, Thompson PM (2012) Identification of common variants associated with human hippocampal and intracranial volumes. Nat Genet 44:552–561. https://doi.org/10.1038/ng.2250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was funded by the National Natural Science Foundation of China (No. 81873108), the Excellent Creative Talents Support Program of Heilongjiang University of Chinese Medicine (No. 2018RCQ08), the Research Foundation of Heilongjiang University of Chinese Medicine (No. 2019BJP02), and the Traditional Chinese Medicine Scientific Research Project in Heilongjiang Province (No. ZHY2022-118).

Author information

Authors and Affiliations

Authors

Contributions

SMH and QYZ led the conception of the manuscript. QYZ, SMH, and FYK interpreted the relevant literature and drafted the manuscript. QYZ, SMH, FYK, BZ, and SS participated in the literature collection and interpretation. SMH and BZ made critical revisions to the manuscript with input from all authors. All authors reviewed the manuscript.

Corresponding author

Correspondence to Bo Zhang.

Ethics declarations

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, Q., Kong, F., Shao, S. et al. Pathogenesis of Depression in Alzheimer’s Disease. Neurochem Res 49, 548–556 (2024). https://doi.org/10.1007/s11064-023-04061-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-023-04061-0

Keywords

Navigation