Skip to main content
Log in

Transforming Growth Factor β1 Ameliorates Microglial Activation in Perioperative Neurocognitive Disorders

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Perioperative neurocognitive disorder (PND) is a common complication of surgery and anesthesia, especially among older patients. Microglial activation plays a crucial role in the occurrence and development of PND and transforming growth factor beta 1 (TGF-β1) can regulate microglial homeostasis. In the present study, abdominal surgery was performed on 12–14 months-old C57BL/6 mice to establish a PND model. The expression of TGF-β1, TGF-β receptor 1, TGF-β receptor 2, and phosphor-smad2/smad3 (psmad2/smad3) was assessed after anesthesia and surgery. Additionally, we examined changes in microglial activation, morphology, and polarization, as well as neuroinflammation and dendritic spine density in the hippocampus. Behavioral tests, including the Morris water maze and open field tests, were used to examine cognitive function, exploratory locomotion, and emotions. We observed decreased TGF-β1 expression after surgery and anesthesia. Intranasally administered exogenous TGF-β1 increased psmad2/smad3 colocalization with microglia positive for ionized calcium-binding adaptor molecule 1. TGF-β1 treatment attenuated microglial activation, reduced microglial phagocytosis, and reduced surgery- and anesthesia-induced changes in microglial morphology. Compared with the surgery group, TGF-β1 treatment decreased M1 microglial polarization and increased M2 microglial polarization. Additionally, surgery- and anesthesia-induced increase in interleukin 1 beta and tumor necrosis factor-alpha levels was ameliorated by TGF-β1 treatment at postoperative day 3. TGF-β1 also ameliorated cognitive function after surgery and anesthesia as well as rescue dendritic spine loss. In conclusion, surgery and anesthesia induced decrease in TGF-β1 levels in older mice, which may contribute to PND development; however, TGF-β1 ameliorated microglial activation and cognitive dysfunction in PND mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed in the present study are available from the corresponding author upon reasonable request.

References

  1. Jin Z, Hu J, Ma D (2020) Postoperative delirium: perioperative assessment, risk reduction, and management. Br J Anaesth 125:492–504. https://doi.org/10.1016/j.bja.2020.06.063

    Article  PubMed  Google Scholar 

  2. Needham MJ, Webb CE, Bryden DC (2017) Postoperative cognitive dysfunction and dementia: what we need to know and do. Br J Anaesth 119:i115–i125. https://doi.org/10.1093/bja/aex354

    Article  PubMed  CAS  Google Scholar 

  3. Feng X, Valdearcos M, Uchida Y, Lutrin D, Maze M, Koliwad SK (2017) Microglia mediate postoperative hippocampal inflammation and cognitive decline in mice. JCI insight 2:e91229. https://doi.org/10.1172/jci.insight.91229

    Article  PubMed  PubMed Central  Google Scholar 

  4. Subramaniyan S, Terrando N (2019) Neuroinflammation and perioperative neurocognitive disorders. Anesth Analg 128:781–788. https://doi.org/10.1213/ane.0000000000004053

    Article  PubMed  PubMed Central  Google Scholar 

  5. Deczkowska A, Keren-Shaul H, Weiner A, Colonna M, Schwartz M, Amit I (2018) Disease-associated microglia: a universal immune sensor of neurodegeneration. Cell 173:1073–1081. https://doi.org/10.1016/j.cell.2018.05.003

    Article  PubMed  CAS  Google Scholar 

  6. Guo L, Choi S, Bikkannavar P, Cordeiro MF (2022) Microglia: key players in retinal ageing and neurodegeneration. Front Cell Neurosci 16:804782. https://doi.org/10.3389/fncel.2022.804782

    Article  PubMed  PubMed Central  Google Scholar 

  7. Salter MW, Stevens B (2017) Microglia emerge as central players in brain disease. Nat Med 23:1018–1027. https://doi.org/10.1038/nm.4397

    Article  PubMed  CAS  Google Scholar 

  8. Sun Y, Wang Y, Ye F, Cui V, Lin D, Shi H, Zhang Y, Wu A, Wei C (2022) SIRT1 activation attenuates microglia-mediated synaptic engulfment in postoperative cognitive dysfunction. Front Aging Neurosci 14:943842. https://doi.org/10.3389/fnagi.2022.943842

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Guo S, Wang H, Yin Y (2022) Microglia polarization from M1 to M2 in neurodegenerative diseases. Front Aging Neurosci 14:815347. https://doi.org/10.3389/fnagi.2022.815347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Liu Y, Yin Y (2018) Emerging roles of immune cells in postoperative cognitive dysfunction. https://doi.org/10.1155/2018/6215350. mediators inflamm 2018:6215350

  11. Safavynia SA, Goldstein PA (2018) The role of neuroinflammation in postoperative cognitive dysfunction: moving from hypothesis to treatment. Front Psychiatry 9:752. https://doi.org/10.3389/fpsyt.2018.00752

    Article  PubMed  Google Scholar 

  12. Zhang X, Huang WJ, Chen WW (2016) TGF-β1 factor in the cerebrovascular diseases of Alzheimer’s disease. Eur Rev Med Pharmacol Sci 20:5178–5185

    PubMed  CAS  Google Scholar 

  13. Caraci F, Battaglia G, Bruno V, Bosco P, Carbonaro V, Giuffrida ML, Drago F, Sortino MA, Nicoletti F, Copani A (2011) TGF-β1 pathway as a new target for neuroprotection in Alzheimer’s disease. CNS Neurosci Ther 17:237–249. https://doi.org/10.1111/j.1755-5949.2009.00115.x

    Article  PubMed  CAS  Google Scholar 

  14. Spittau B, Dokalis N, Prinz M (2020) The role of TGFβ signaling in microglia maturation and activation. Trends Immunol 41:836–848. https://doi.org/10.1016/j.it.2020.07.003

    Article  PubMed  CAS  Google Scholar 

  15. Olah M, Patrick E, Villani AC, Xu J, White CC, Ryan KJ, Piehowski P, Kapasi A, Nejad P, Cimpean M, Connor S, Yung CJ, Frangieh M, McHenry A, Elyaman W, Petyuk V, Schneider JA, Bennett DA, De Jager PL, Bradshaw EM (2018) A transcriptomic atlas of aged human microglia. Nat Commun 9:539. https://doi.org/10.1038/s41467-018-02926-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Norden DM, Fenn AM, Dugan A, Godbout JP (2014) TGFβ produced by IL-10 redirected astrocytes attenuates microglial activation. Glia 62:881–895. https://doi.org/10.1002/glia.22647

    Article  PubMed  PubMed Central  Google Scholar 

  17. Buttgereit A, Lelios I, Yu X, Vrohlings M, Krakoski NR, Gautier EL, Nishinakamura R, Becher B, Greter M (2016) Sall1 is a transcriptional regulator defining microglia identity and function. Nat Immunol 17:1397–1406. https://doi.org/10.1002/glia.22647

    Article  PubMed  CAS  Google Scholar 

  18. Zöller T, Schneider A, Kleimeyer C, Masuda T, Potru PS, Pfeifer D, Blank T, Prinz M, Spittau B (2018) Silencing of TGFβ signalling in microglia results in impaired homeostasis. Nat Commun 9:4011. https://doi.org/10.1038/s41467-018-06224-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Abutbul S, Shapiro J, Szaingurten-Solodkin I, Levy N, Carmy Y, Baron R, Jung S, Monsonego A (2012) TGF-β signaling through SMAD2/3 induces the quiescent microglial phenotype within the CNS environment. Glia 60:1160–1171. https://doi.org/10.1002/glia.22343

    Article  PubMed  Google Scholar 

  20. Luo T, Lin D, Hao Y, Shi R, Wei C, Shen W, Wu A, Huang P (2021) Ginkgolide B–mediated therapeutic effects on perioperative neurocognitive dysfunction are associated with the inhibition of iNOS–mediated production of NO. Mol Med Rep 24. https://doi.org/10.3892/mmr.2021.12176

  21. Zhang K, Yang C, Chang L, Sakamoto A, Suzuki T, Fujita Y, Qu Y, Wang S, Pu Y, Tan Y, Wang X, Ishima T, Shirayama Y, Hatano M, Tanaka KF, Hashimoto K (2020) Essential role of microglial transforming growth factor-β1 in antidepressant actions of (R)-ketamine and the novel antidepressant TGF-β1. Transl Psychiatry 10:32. https://doi.org/10.1038/s41398-020-0733-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1:848–858. https://doi.org/10.1038/nprot.2006.116

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kraeuter AK, Guest PC, Sarnyai Z (2019) The open field test for measuring locomotor activity and anxiety-like behavior. Methods Mol Biol 1916:99–103. https://doi.org/10.1007/978-1-4939-8994-2_9

    Article  PubMed  CAS  Google Scholar 

  24. Schafer DP, Lehrman EK, Heller CT, Stevens B (2014) An engulfment assay: a protocol to assess interactions between CNS phagocytes and neurons. J Vis Exp. https://doi.org/10.3791/51482

    Article  PubMed  PubMed Central  Google Scholar 

  25. Young K, Morrison H (2018) Quantifying microglia morphology from photomicrographs of immunohistochemistry prepared tissue using ImageJ. J Vis Exp. https://doi.org/10.3791/57648

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wang R, Palavicini JP, Wang H, Maiti P, Bianchi E, Xu S, Lloyd BN, Dawson-Scully K, Kang DE, Lakshmana MK (2014) RanBP9 overexpression accelerates loss of dendritic spines in a mouse model of Alzheimer’s disease. Neurobiol Dis 69:169–179. https://doi.org/10.1016/j.nbd.2014.05.029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G, Koeglsperger T, Dake B, Wu PM, Doykan CE, Fanek Z, Liu L, Chen Z, Rothstein JD, Ransohoff RM, Gygi SP, Antel JP, Weiner HL (2014) Identification of a unique TGF-β-dependent molecular and functional signature in microglia. Nat Neurosci 17:131–143. https://doi.org/10.1038/nn.3599

    Article  PubMed  CAS  Google Scholar 

  28. Spittau B, Wullkopf L, Zhou X, Rilka J, Pfeifer D, Krieglstein K (2013) Endogenous transforming growth factor-beta promotes quiescence of primary microglia in vitro. Glia 61:287–300. https://doi.org/10.1002/glia.22435

    Article  PubMed  Google Scholar 

  29. Islam A, Choudhury ME, Kigami Y, Utsunomiya R, Matsumoto S, Watanabe H, Kumon Y, Kunieda T, Yano H, Tanaka J (2018) Sustained anti-inflammatory effects of TGF-β1 on microglia/macrophages. Biochim Biophys Acta Mol Basis Dis 1864:721–734. https://doi.org/10.1016/j.bbadis.2017.12.022

    Article  PubMed  CAS  Google Scholar 

  30. Zhang ZJ, Zheng XX, Zhang XY, Zhang Y, Huang BY, Luo T (2020) Aging alters Hv1-mediated microglial polarization and enhances neuroinflammation after peripheral surgery. CNS Neurosci Ther 26:374–384. https://doi.org/10.1111/cns.13271

    Article  PubMed  CAS  Google Scholar 

  31. Andoh M, Koyama R (2021) Microglia regulate synaptic development and plasticity. Dev Neurobiol 81:568–590. https://doi.org/10.1002/dneu.22814

    Article  PubMed  PubMed Central  Google Scholar 

  32. Krukowski K, Chou A, Feng X, Tiret B, Paladini MS, Riparip LK, Chaumeil MM, Lemere C, Rosi S (2018) Traumatic brain injury in aged mice induces chronic microglia activation, synapse loss, and complement-dependent memory deficits. Int J Mol Sci 19. https://doi.org/10.3390/ijms19123753

  33. Zhao J, Wang B, Wu X, Yang Z, Huang T, Guo X, Guo D, Liu Z, Song J (2020) TGFβ1 alleviates axonal injury by regulating microglia/macrophages alternative activation in traumatic brain injury. Brain Res Bull 161:21–32. https://doi.org/10.1016/j.brainresbull.2020.04.011

    Article  PubMed  CAS  Google Scholar 

  34. Taylor RA, Chang CF, Goods BA, Hammond MD, Mac Grory B, Ai Y, Steinschneider AF, Renfroe SC, Askenase MH, McCullough LD, Kasner SE, Mullen MT, Hafler DA, Love JC, Sansing LH (2017) TGF-β1 modulates microglial phenotype and promotes recovery after intracerebral hemorrhage. J Clin Invest 127:280–292. https://doi.org/10.1172/jci88647

    Article  PubMed  Google Scholar 

  35. Sun ZZ, Li YF, Xv ZP, Zhang YZ, Mi WD (2020) Bone marrow mesenchymal stem cells regulate TGF-β to adjust neuroinflammation in postoperative central inflammatory mice. J Cell Biochem 121:371–384. https://doi.org/10.1002/jcb.29188

    Article  PubMed  CAS  Google Scholar 

  36. Patel RK, Prasad N, Kuwar R, Haldar D, Abdul-Muneer PM (2017) Transforming growth factor-beta 1 signaling regulates neuroinflammation and apoptosis in mild traumatic brain injury. Brain Behav Immun 64:244–258. https://doi.org/10.1016/j.bbi.2017.04.012

    Article  PubMed  CAS  Google Scholar 

  37. Tichauer JE, Flores B, Soler B, Eugenín-von Bernhardi L, Ramírez G, von Bernhardi R (2014) Age-dependent changes on TGFβ1 Smad3 pathway modify the pattern of microglial cell activation. Brain Behav Immun 37:187–196. https://doi.org/10.1016/j.bbi.2013.12.018

    Article  PubMed  CAS  Google Scholar 

  38. Yu Y, Li J, Zhou H, Xiong Y, Wen Y, Li H (2018) Functional importance of the TGF-β1/Smad3 signaling pathway in oxygen-glucose-deprived (OGD) microglia and rats with cerebral ischemia. Int J Biol Macromol 116:537–544. https://doi.org/10.1016/j.ijbiomac.2018.04.113

    Article  PubMed  CAS  Google Scholar 

  39. Zhang L, Wei W, Ai X, Kilic E, Hermann DM, Venkataramani V, Bähr M, Doeppner TR (2021) Extracellular vesicles from hypoxia-preconditioned microglia promote angiogenesis and repress apoptosis in stroke mice via the TGF-β/Smad2/3 pathway. Cell Death Dis 12:1068. https://doi.org/10.1038/s41419-021-04363-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Attaai A, Neidert N, von Ehr A, Potru PS, Zöller T, Spittau B (2018) Postnatal maturation of microglia is associated with alternative activation and activated TGFβ signaling. Glia 66:1695–1708. https://doi.org/10.1002/glia.23332

    Article  PubMed  Google Scholar 

  41. Walker FR, Beynon SB, Jones KA, Zhao Z, Kongsui R, Cairns M, Nilsson M (2014) Dynamic structural remodelling of microglia in health and disease: a review of the models, the signals and the mechanisms. Brain Behav Immun 37:1–14. https://doi.org/10.1016/j.bbi.2013.12.010

    Article  PubMed  CAS  Google Scholar 

  42. Matsumoto S, Choudhury ME, Takeda H, Sato A, Kihara N, Mikami K, Inoue A, Yano H, Watanabe H, Kumon Y, Kunieda T, Tanaka J (2022) Microglial re-modeling contributes to recovery from ischemic injury of rat brain: a study using a cytokine mixture containing granulocyte-macrophage colony-stimulating factor and interleukin-3. Front Neurosci 16:941363. https://doi.org/10.3389/fnins.2022.941363

    Article  PubMed  PubMed Central  Google Scholar 

  43. Butovsky O, Weiner HL (2018) Microglial signatures and their role in health and disease. Nat Rev Neurosci 19:622–635. https://doi.org/10.1038/s41583-018-0057-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S, Ramakrishnan S, Merry KM, Shi Q, Rosenthal A, Barres BA, Lemere CA, Selkoe DJ, Stevens B (2016) Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 352:712–716. https://doi.org/10.1126/science.aad8373

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Xiong C, Liu J, Lin D, Zhang J, Terrando N, Wu A (2018) Complement activation contributes to perioperative neurocognitive disorders in mice. J Neuroinflammation 15:254. https://doi.org/10.1186/s12974-018-1292-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Shui M, Sun Y, Lin D, Xue Z, Liu J, Wu A, Wei C (2022) Anomalous levels of CD47/Signal Regulatory protein alpha in the hippocampus lead to excess microglial engulfment in mouse model of perioperative neurocognitive disorders. Front Neurosci 16:788675. https://doi.org/10.3389/fnins.2022.788675

    Article  PubMed  PubMed Central  Google Scholar 

  47. Li D, Chen M, Meng T, Fei J (2020) Hippocampal microglial activation triggers a neurotoxic-specific astrocyte response and mediates etomidate-induced long-term synaptic inhibition. J Neuroinflammation 17:109. https://doi.org/10.1186/s12974-020-01799-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Ma D, Liu J, Wei C, Shen W, Yang Y, Lin D, Wu A (2021) Activation of CD200-CD200R1 axis attenuates perioperative neurocognitive disorder through inhibition of neuroinflammation in mice. Neurochemical Res 46:3190–3199. https://doi.org/10.1007/s11064-021-03422-x

    Article  CAS  Google Scholar 

  49. Zhong Y, Gu L, Ye Y, Zhu H, Pu B, Wang J, Li Y, Qiu S, Xiong X, Jian Z (2022) JAK2/STAT3 axis intermediates microglia/macrophage polarization during cerebral ischemia/reperfusion injury. Neuroscience 496:119–128. https://doi.org/10.1016/j.neuroscience.2022.05.016

    Article  PubMed  CAS  Google Scholar 

  50. Huang W, Tao Y, Zhang X, Zhang X (2022) TGF-β1/SMADs signaling involved in alleviating inflammation induced by nanoparticulate titanium dioxide in BV2 cells. Toxicol In Vitro 80:105303. https://doi.org/10.1016/j.tiv.2021.105303

    Article  PubMed  CAS  Google Scholar 

  51. Liu F, Qiu H, Xue M, Zhang S, Zhang X, Xu J, Chen J, Yang Y, Xie J (2019) MSC-secreted TGF-β regulates lipopolysaccharide-stimulated macrophage M2-like polarization via the Akt/FoxO1 pathway. Stem Cell Res Ther 10:345. https://doi.org/10.1186/s13287-019-1447-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Qiu LL, Pan W, Luo D, Zhang GF, Zhou ZQ, Sun XY, Yang JJ, Ji MH (2020) Dysregulation of BDNF/TrkB signaling mediated by NMDAR/Ca(2+)/calpain might contribute to postoperative cognitive dysfunction in aging mice. J Neuroinflammation 17:23. https://doi.org/10.1186/s12974-019-1695-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Xie Y, Chen X, Li Y, Chen S, Liu S, Yu Z, Wang W (2022) Transforming growth factor-β1 protects against LPC-induced cognitive deficit by attenuating pyroptosis of microglia via NF-κB/ERK1/2 pathways. J Neuroinflammation 19:194. https://doi.org/10.1186/s12974-022-02557-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank the assistance of the State Key Laboratory of Membrane Biology at Peking University in Beijing, China. We thank the assistance from the Central Core Facility of the National Center for Protein Sciences at Peking University, and Dr. Siying Qin at the Core Facilities of the School of Life Sciences, Peking University for assistance with optical/confocal imaging.

Funding

This study was supported by grand no. 82071176 from the National Science Foundation of China (NSFC), Beijing, China, grand no. 7222074 from the Beijing Natural Science Foundation, Beijing, China, and grand no. CYJZ202128 from Beijing Chao-Yang Hospital Golden Seeds Foundation. This study was supported by the NSFC general research grants (81971679), the National of Science and Technology Innovation 2030 (2022ZD0211800), and the Qidong-PKU SLS Innovation Fund (2016000663).

Author information

Authors and Affiliations

Authors

Contributions

Study design, C. W, A. W, Z.Y, and D.L; Performed research, D. L, D. Y, S.Y, Y. W; Data analyzed, M. S, Z. X; Writing-Original draft preparation, D. L, D. Y; Writing-review & editing, S.Y, Y. W, C.W, A. W; Supervision, C.W, A. W, Z.Y; Funding acquisition, Y. S, Y. Z, A. W. The final manuscript was approved by all authors.

Corresponding authors

Correspondence to Yan Zhang, Anshi Wu or Changwei Wei.

Ethics declarations

Consent for Publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

11064_2023_3994_MOESM1_ESM.docx

Supplementary Fig. 1 TGF-β1 level on postoperative day 1, 3, and 7. (A) Representative images from western blotting of TGF-β1. (B) Quantification of TGF-β1. n = 3. Data are shown as mean ± SEM. *p < 0.05. POD, postoperative day. Supplementary Fig. 2 Lamp1 level on postoperative day 3. (A) Representative images from western blotting of Lamp1 in hippocampus. (B) Quantification of Lamp1. n = 6. Data are shown as mean ± SEM. *p < 0.05; **p < 0.01. Supplementary Fig. 3 CD16/32 and CD206 level on postoperative day 3. (A) Representative images from western blotting of CD16/32 and CD206 in hippocampus. (B) Quantification of CD206. (C) Quantification of CD16/32. n = 6. Data are shown as mean ± SEM. *p < 0.05; **p < 0.01.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, D., Sun, Y., Wang, Y. et al. Transforming Growth Factor β1 Ameliorates Microglial Activation in Perioperative Neurocognitive Disorders. Neurochem Res 48, 3512–3524 (2023). https://doi.org/10.1007/s11064-023-03994-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-023-03994-w

Keywords

Navigation