Skip to main content
Log in

Chronic Kombucha Beverage Consumption Attenuates Inflammatory Markers and Histopathology of Brain Tissue in Transnet Global Brain Ischemia in Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

There is evidence that kombucha beverage (KB), a traditional fermented beverage, has a preventive effect on experimental brain ischemia. According to our previous studies, pre-treatment of KB attenuates brain edema and improves motor skills and oxidative stress in a rat model of global brain ischemia. This study was designed to evaluate the effects of the pre-treatment of KB, as a novel agent, on pro-inflammatory parameters and brain histopathology changes following global brain ischemia. Adult male Wistar rats were randomly divided into the sham, the control, and the groups treated with kombucha (KB1 and KB2 groups). KB at doses 1 and 2 mL/kg was prescribed two-week consecutive days before induction of global brain ischemia. Global brain ischemia was induced by blocking common carotid arteries for 60 min and the following reperfusion by 24 h. The serum and brain levels of tumor necrosis factor-α(TNF-α), IL-1β, histopathological change, and infarct volume are determined using the ELISA, hematoxylin and eosin (H&E), and 2,3,5-triphenyl tetrazolium chloride (TTC) staining, respectively. This study indicated that pre-treatment of KB significantly reduced infarct volume, the serum, and brain levels of TNF-α and IL-1β. The histopathological finding of the brain tissue confirmed a protective role for pre-treatment KB in the ischemic rats. Thus, the present study showed that the beneficial effects of KB pre-treatment on brain ischemic may be mediated by decreasing pro-inflammatory parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets of this study are available from the corresponding author upon reasonable request.

References

  1. Gaggia F, Baffoni L, Galiano M, Nielsen DS, Jakobsen RR, Castro-Mejía JL, Bosi S, Truzzi F, Musumeci F, Dinelli G, Di Gioia D (2018) Kombucha beverage from green, black and rooibos teas: a comparative study looking at microbiology, chemistry and antioxidant activity. Nutrients 11(1):1. https://doi.org/10.3390/nu11010001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wu S, Yu Q, Shen S, Shan X, Hua J, Zhu J, Qiu J, Deng Y, Zhou Q, Jiang Y, Yuan H (2022) Non-targeted metabolomics and electronic tongue analysis reveal the effect of rolling time on the sensory quality and nonvolatile metabolites of congou black tea. LWT 169:113971

    Article  CAS  Google Scholar 

  3. Jayabalan R, Malbasa RV, Loncar ES, Vitas JS, Sathishkumar M (2014) A review on kombucha tea-microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. Compr Rev Food Safety 13(4):538–550. https://doi.org/10.1111/1541-4337.12073

    Article  Google Scholar 

  4. Wang Y, Ji B, Wu W, Wang R, Yang Z, Zhang D, Tian W (2014) Hepatoprotective effects of kombucha tea: identification of functional strains and quantification of functional components. J SciFood Agric 94(2):265–272. https://doi.org/10.1002/jsfa.6245

    Article  CAS  Google Scholar 

  5. Batista P, Penas MR, Pintado M, Oliveira-Silva P (2022) Kombucha: perceptions and future prospects. Foods 11(13):1977. https://doi.org/10.3390/foods11131977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bhattacharya S, Gachhui R, Sil PC (2013) Effect of kombucha, a fermented black tea in attenuating oxidative stress mediated tissue damage in alloxan-induced diabetic rats. Food Chem Toxicol 60:328–340. https://doi.org/10.1016/j.fct.2013.07.051

    Article  CAS  PubMed  Google Scholar 

  7. Jessica Martínez Leal MJ, Suárez LV, Jayabalan R, Oros JH, Escalante-Aburto A (2018) A review on health benefits of kombucha nutritional compounds and metabolites, CyTA -. J Food 16(1):390–399. https://doi.org/10.1080/19476337.2017.1410499

    Article  CAS  Google Scholar 

  8. Murugesan GS, Sathishkumar M, Jayabalan R, Binupriya AR, Swaminathan K, Yun SE (2009) Hepatoprotective and curative properties of Kombucha tea against carbon tetrachloride-induced toxicity. J Microbiol Biotechnol 19(4):397–402. https://doi.org/10.4014/jmb.0806.374

    Article  CAS  PubMed  Google Scholar 

  9. Diez-Ozaeta I, Astiazaran OJ (2022) Recent advances in kombucha tea: microbial consortium, chemical parameters, health implications and biocellulose production. Int J Food Microbiol 16:377:109783. https://doi.org/10.1016/j.ijfoodmicro

    Article  Google Scholar 

  10. Marzban F, Azizi G, Afraei S, Sedaghat R, Seyedzadeh MH, Razavi A, Mirshafiey A (2015) Kombucha tea ameliorates experimental autoimmune encephalomyelitis in mouse model of multiple sclerosis. Food and Agricultural Immunology 2(6):782–793. https://doi.org/10.1080/09540105.2015.1036353

    Article  CAS  Google Scholar 

  11. Haghmorad D, Yazdanpanah E, Sadighimoghaddam B, Yousefi B, Sahafi P, Ghorbani N, Rashidy-Pour A, Kokhaei P (2021) Kombucha ameliorates experimental autoimmune encephalomyelitis through activation of Treg and Th2 cells. Acta Neurol Belg 121(6):1685–1692. https://doi.org/10.1007/s13760-020-01475-3

    Article  PubMed  Google Scholar 

  12. Mousavi SM, Hashemi SA, Zarei M, Gholami A, Lai CW, Chiang WH, Omidifar N, Bahrani S, Mazraedoost S (2020) Recent progress in chemical composition, production, and pharmaceutical effects of kombucha beverage: A complementary and alternative medicine. Evid Based Complement Alternat Med. 18; 2020:4397543. doi: https://doi.org/10.1155/2020/4397543

  13. Kabiri N, Setorki M (2016) Protective effect of kombucha tea on brain damage induced by transient cerebral ischemia and reperfusion in rat. Bangladesh J Pharmacol 11(3):675–683

    Article  Google Scholar 

  14. Mesgari-Abbasi M, Eskandari Vaezi F, Hossienzadeh F (2022) Chronic pre-treatment of kombucha tea protects brain injury induced by ischemia/reperfusion in global brain ischemia, PREPRINT (Version 1) available. https://doi.org/10.21203/rs.3.rs-1482869/v1]. at Research Square [

  15. Vázquez-Cabral BD, Larrosa-Pérez M, Gallegos-Infante JA, Moreno-Jiménez MR, González-Laredo RF, Rutiaga-Quiñones JG, Gamboa-Gomez CI, Rocha-Guzman NE (2017) Oak kombucha protects against oxidative stress and inflammatory processes. Chem Biol Interact 25:272:1–9. https://doi.org/10.1016/j.cbi.2017.05.001

    Article  CAS  Google Scholar 

  16. Pawluk H, Woźniak A, Grzesk G, Kołodziejska R, Kozakiewicz M, Kopkowska E, Grzechowiak E, Kozera G (2020) The role of selected pro-inflammatory cytokines in pathogenesis of ischemic stroke. Clin Interv Aging 15:469–484. https://doi.org/10.2147/CIA.S233909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhu H, Hu S, Li Y, Sun Y, Xiong X, Hu X, Chen J, Qiu Sh (2022) Interleukins and ischemic stroke. Front Immunol 13:828447. https://doi.org/10.3389/fimmu.2022.828447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen AQ, Fang Z, Chen XL, Yang S, Zhou YF, Mao L, Xia YP, Jin HJ, Li YN, You MF, Wang XX (2019) Microglia-derived TNF-α mediates endothelial necroptosis aggravating blood brain–barrier disruption after ischemic stroke. Cell Death Dis 10(7):487. https://doi.org/10.1038/s41419-019-1716-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Muller S, Kufner A, Dell’Orco A, Rackoll T, Mekle R, Piper SK, Fiebach JB, Villringer K, Flöel A, Endres M, Ebinger M, Nave AH) 2021(evolution of blood-brain barrier permeability in subacute ischemic stroke and associations with serum biomarkers and functional outcome. Front Neurol 20; 12:730923. doi: https://doi.org/10.3389/fneur.2021.730923

  20. Nian K, Harding IC, Herman IM, Ebong EE (2020) Blood-brain barrier damage in ischemic stroke and its regulation by endothelial mechano transduction. Front Physiol. 2020; 11:605398. doi:https://doi.org/10.3389/fphys.2020.605398

  21. Vakili A, Mojarrad S, Akhavan MM, Rashidy-Pour A (2011) Pentoxifylline attenuates TNF-α protein levels and brain edema following temporary focal cerebral ischemia in rats. Brain Res 1377:119–125. https://doi.org/10.1016/j.brainres.2011.01.001

    Article  CAS  PubMed  Google Scholar 

  22. Klopfleisch R (2013) Multiparametric and semiquantitative scoring systems for the evaluation of mouse model histopathology–a systematic review. BMC Vet Res 9:123. https://doi.org/10.1186/1746-6148-9-123

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lakshminarayanashastry Viswanatha G, Venkatanarasappa Venkataranganna M, Lingeswara Prasad NB (2019) Methanolic leaf extract of Punica granatum attenuates ischemia-reperfusion brain injury in Wistar rats: potential antioxidant and anti-inflammatory mechanisms. Iran J Basic Med Sci 22(2):187–196. https://doi.org/10.22038/ijbms.2018.30660.7389

    Article  PubMed  PubMed Central  Google Scholar 

  24. Viswanatha GL, Kumar LM, Rafiq M, Kavya KJ, Thippeswamy AH, Yuvaraj HC, Azeemuddin M, Anturlikar SD, Patki PS, Babu UV, Ramakrishnan S (2015) LC-MS/MS profiling and neuroprotective effects of Mentat® against transient global ischemia and reperfusion-induced brain injury in rats. Nutrition 31(7–8):1008–1017. https://doi.org/10.1016/j.nut.2015.02.009

    Article  CAS  PubMed  Google Scholar 

  25. Bemeur C, Qu H, Desjardins P, Butterworth RF (2010) IL-1 or TNF receptor gene deletion delays onset of encephalopathy and attenuates brain edema in experimental acute liver failure. Neurochem Int 56(2):213–215. https://doi.org/10.1016/j.neuint.2009.11.010

    Article  CAS  PubMed  Google Scholar 

  26. Rama Rao KV, Jayakumar AR, Tong X, Alvarez VM, Norenberg MD (2010) Marked potentiation of cell swelling by cytokines in ammonia-sensitized cultured astrocytes. J Neuroinflammation 7:66. https://doi.org/10.1186/1742-2094-7-66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jang DI, Lee AH, Shin HY, Song HR, Park JH, Kang TB, Lee SR, Yang SH (2021) The role of tumor necrosis factor alpha (TNF-α) in autoimmune disease and current TNF-α inhibitors in therapeutics. Int J Mol Sci 8(22):2719. https://doi.org/10.3389/fphys.2020.605398

    Article  Google Scholar 

  28. Liu LR, Liu JC, Bao JS, Bai QQ, Wang GQ (2020) Interaction of microglia and astrocytes in the neurovascular unit. Front Immunol 8. https://doi.org/10.3389/fimmu.2020.01024. ,11:1024

  29. Shreeniwas R, Koga S, Karakurum M, Pinsky D, Kaiser E, Brett J, Wolitzky BA, Norton C, plocinski J, Benjamin W (1992) Hypoxia-mediated induction of endothelial cell interleukin-1 alpha. An autocrine mechanism promoting expression of leukocyte adhesion molecules on the vessel surface. J Clin Invest 90(6):2333–2339. https://doi.org/10.1172/JCI116122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu FQ, Liu Y, Lui VC, Lamb JR, Tam PK, Chen Y (2008) Hypoxia modulates lipopolysaccharide induced TNF-alpha expression in murine macrophages. Exp CellRes 314(6):1327–1336. https://doi.org/10.1016/j.yexcr.2008.01.007

    Article  CAS  Google Scholar 

  31. Petronilho F, P ́erico SR, Vuolo F, MinaF, Constantino L, Comim CM, Quevedo J, Souza DO, Dal-PizzolF (2012) Protective effects of guanosine against sepsis-induced damage in rat brain and cognitive impairment. Brain Behav Immun 26:904–910. https://doi.org/10.1016/j.bbi.2012.03.007

    Article  CAS  PubMed  Google Scholar 

  32. Yli-Karjanmaa M, Clausen BH, Degn M, Novrup HG, Ellman DG, Toft-Jensen P, Szymkowski DE, Stensballe A, Meyer M, Brambilla R, Lambertsen KL (2019) Topical administration of a soluble TNF inhibitor reduces infarct volume after focal cerebral ischemia in mice. Front Neurosci 7:13:781. https://doi.org/10.3389/fnins.2019.00781

    Article  Google Scholar 

  33. Yang C, Hawkins KE, Doré S, Candelario-Jalil E (2019) Neuroinflammatory mechanisms of blood-brain barrier damage in ischemic stroke. Am J Physiol Cell Physiol. 1;316(2):C135-C153. doi: https://doi.org/10.1152/ajpcell.00136.2018

  34. Fischer R, Maier O (2015) Interrelation of oxidative stress and inflammation in neurodegenerative disease: role of TNF. Oxid Med Cell Longev. 2015:610813. doi: https://doi.org/10.1155/2015/610813

  35. Murray KN, Parry-Jones AR, Allan SM (2015) Interleukin-1 and acute brain injury. Front Cell Neurosci 9:18. https://doi.org/10.3389/fncel.2015.00018PMID: 25705177; PMCID: PMC4319479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hasegawa T, Hall CJ, Crosier PS, Abe G, Kawakami K, Kudo A, Kawakami A (2017) Transient inflammatory response mediated by interleukin-1β is required for proper regeneration in zebrafish fin fold. Elife 23:6: e22716. https://doi.org/10.7554/eLife.22716

    Article  Google Scholar 

  37. Hsieh HL, Yang CM (2013) Role of redox signaling in neuroinflammation and neurodegenerative diseases. Biomed Res Int. 2013:484613. doi: https://doi.org/10.1155/2013/484613

  38. Hasegawa T, Hall CJ, Crosier PS, Abe G, Kawakami K, Kudo A, Kawakami A (2017) Transient inflammatory response mediated by interleukin-1β is required for proper regeneration in zebrafish fin fold. Elife 6:e22716. https://doi.org/10.7554/eLife.22716

    Article  PubMed  PubMed Central  Google Scholar 

  39. Tarkowski E, Ringqvist A, Rosengren L, Jensen C, Ekholm S, Wennmalm A (2000) Intrathecal release of nitric oxide and its relation to final brain damage in patients with stroke. Cerebrovasc Dis 10(3):200–206. https://doi.org/10.1159/000016057

    Article  CAS  PubMed  Google Scholar 

  40. Gharib OA (2009) Effects of Kombucha on oxidative stress induced nephrotoxicity in rats. Chin Med 27: 4:23. doi: https://doi.org/10.1186/1749-8546-4-23

  41. Jurcau A, Simion A (2021) Neuroinflammation in cerebral ischemia and ischemia/reperfusion injuries: from pathophysiology to therapeutic strategies. Int J Mol Sci 21(1):14. https://doi.org/10.3390/ijms23010014

    Article  CAS  Google Scholar 

  42. McGarry T, Biniecka M, Veale DJ, Fearon U (2018) Hypoxia, oxidative stress and inflammation. Free Radic Biol Med 125:15–24. https://doi.org/10.1016/j.freeradbiomed.2018.03.042

    Article  CAS  PubMed  Google Scholar 

  43. Kruk J, Aboul-Enein HY, Kładna A, Bowser JE (2019) Oxidative stress in biological systems and its relation with pathophysiological functions: the effect of physical activity on cellular redox homeostasis. Free Radic Res 4(5):497–521. https://doi.org/10.1080/10715762.2019.1612059

    Article  CAS  Google Scholar 

  44. Aloulou A, Hamden K, Elloumi D, Ali MB, Hargafi K, Jaouadi B, Ayadi F, Elfeki A, Ammar E (2012) Hypoglycemic and antilipidemic properties of kombucha tea in alloxan-induced diabetic rats. BMC Complement Altern Med 16:12:63. https://doi.org/10.1186/1472-6882-12-63

    Article  Google Scholar 

  45. Neumann JT, Cohan CH, Dave KR, Wright CB, Perez-Pinzon MA (2013) Global cerebral ischemia: synaptic and cognitive dysfunction. Curr Drug Targets 14(1):20–35. https://doi.org/10.2174/138945013804806514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stradecki-Cohan HM, Cohan CH, Raval AP, Dave KR, Reginensi D, Gittens RA, Youbi M, Perez-Pinzon MA (2017) Cognitive deficits after cerebral ischemia and underlying dysfunctional plasticity: potential targets for recovery of cognition. J Alzheimers 60(s1):S87–S105. https://doi.org/10.3233/JAD-170057

    Article  Google Scholar 

  47. Cheng X, Yang YL, Li WH, Liu M, Zhang SS, Wang YH, Du GH (2020) Dynamic alterations of brain injury, functional recovery, and metabolites profile after cerebral ischemia/reperfusion in rats contributes to potential biomarkers. J Mol Neurosci 70(5):667–676. https://doi.org/10.1007/s12031-019-01474-x

    Article  CAS  PubMed  Google Scholar 

  48. Chen C, Zhang X, Huang H, Bao H, Li X, Cheng Y, Zhang J, Ding Y, Yang Y, Gu H, Xia D (2021) Bi-enzymes treatments attenuate cognitive impairment associated with oxidative damage of heavy metals. R Soc Open Sci 13(1):201404. https://doi.org/10.1098/rsos.201404

    Article  CAS  Google Scholar 

  49. Bellassoued K, Ghrab F, Makni-Ayadi F, Van Pelt J, Elfeki A, Ammar E (2015) Protective effect of kombucha on rats fed a hypercholesterolemic diet is mediated by its antioxidant activity. Pharm Biol 53(11):1699–1709. https://doi.org/10.3109/13880209.2014.1001408

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Mr. Mahmud Reza Hassanzadeh for his helpful surgery assistance.

Funding

This study was financially supported by the Drug Applied Research Center of Tabriz University of Medical Sciences (Grant no. 66949), and Author F.H. has received this research support.

Author information

Authors and Affiliations

Authors

Contributions

Fariba Ghiasi and Fezzeh Hosseinzadeh conceived and designed the study and wrote the paper. Mehran Mesgari-Abbasi, Monireh Khordadmehr, and Sepideh Imani performed laboratory experiments and contributed to the analysis. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Fezzeh Hosseinzadeh.

Ethics declarations

Competing Interests

There was no conflict of interest.

Ethics Approval

The study was approved by the research and ethics committee of Tabriz University of Medical Sciences in Iran (the ethics code was (IR.TBZMED.VCR.REC.1400.115). All procedures were performed according to guidelines for the care and use of laboratory animals at Tabriz University of Medical Sciences.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghiasi, F., Mesgari-Abbasi, M., Khordadmehr, M. et al. Chronic Kombucha Beverage Consumption Attenuates Inflammatory Markers and Histopathology of Brain Tissue in Transnet Global Brain Ischemia in Rats. Neurochem Res 48, 3202–3211 (2023). https://doi.org/10.1007/s11064-023-03980-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-023-03980-2

Keywords

Navigation