Skip to main content

Advertisement

Log in

Relationship of Sulfatides Physiological Function and Peroxisome Proliferator-Activated Receptor α

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Sulfatides are unique sphingolipids present in the serum and the plasma membrane. Sulfatides exert important functions in a number of systems in the human body, including the nervous, immune, cardiovascular, and coagulation systems.Furthermore, it is closely related to tumor occurrence, development, and metastasis. Peroxisome proliferators-activated receptor α (PPARα) is a class of the nuclear receptor superfamily of transcription factors, which is a potential regulator of sulfatides. This review not only summarizes the current knowledge on the physiological functions of sulfatides in various systems, but also discusses the possible PPARα regulatory mechanisms in sulfatide metabolism and functions. The results of the present analysis provide deep insights and further novel ideas for expanding the research on the physiological function and clinical application of sulfatides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Xiao S, Finkielstein CV, Capelluto DG (2013) The enigmatic role of sulfatides: new insights into cellular functions and mechanisms of protein recognition. Adv Exp Med Biol 991:27–40

    Article  CAS  PubMed  Google Scholar 

  2. Holm LJ, Haupt-Jorgensen M, Giacobini JD, Hasselby JP, Bilgin M, Buschard K (2019) Fenofibrate increases very-long-chain sphingolipids and improves blood glucose homeostasis in NOD mice. Diabetologia 62:2262–2272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Blomqvist M, Zetterberg H, Blennow K, Mansson JE (2021) Sulfatide in health and disease, The evaluation of sulfatide in cerebrospinal fluid as a possible biomarker for neurodegeneration. Mol Cell Neurosci. https://doi.org/10.1016/j.mcn.2021.103670

    Article  PubMed  Google Scholar 

  4. Takahashi T, Suzuki T (2012) Role of sulfatide in normal and pathological cells and tissues. J Lipid Res 53:1437–1450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hirahara Y, Wakabayashi T, Mori T, Koike T, Yao I, Tsuda M, Honke K, Gotoh H, Ono K, Yamada H (2017) Sulfatide species with various fatty acid chains in oligodendrocytes at different developmental stages determined by imaging mass spectrometry. J Neurochem 140:435–450

    Article  CAS  PubMed  Google Scholar 

  6. Chen MH, Qi B, Cai QQ, Sun JW, Fu LS, Kang CL, Fan F, Ma MZ, Wu XZ (2022) LncRNA lncAY is upregulated by sulfatide via Myb/MEF2C acetylation to promote the tumorigenicity of hepatocellular carcinoma cells. Biochim Biophys Acta Gene Regul Mech 1865:194777

    Article  CAS  PubMed  Google Scholar 

  7. Cao Q, Chen X, Wu X, Liao R, Huang P, Tan Y, Wang L, Ren G, Huang J, Dong C (2018) Inhibition of UGT8 suppresses basal-like breast cancer progression by attenuating sulfatide-αVβ5 axis. J Exp Med 215:1679–1692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang SX, Yang CL, Zhang M, Zhang P, Liu RT, Zhang N, Yang B, Li XL, Dou YC, Duan RS (2019) Sulfatides ameliorate experimental autoimmune neuritis by suppressing Th1/Th17 cells. J Neuroimmunol 326:55–61

    Article  CAS  PubMed  Google Scholar 

  9. Yang Y, Feng Y, Zhang X, Nakajima T, Tanaka N, Sugiyama E, Kamijo Y, Aoyama T (2016) Activation of PPARalpha by fatty acid accumulation enhances fatty acid degradation and sulfatide synthesis. Tohoku J Exp Med 240:113–122

    Article  CAS  PubMed  Google Scholar 

  10. Tan Y, Wang M, Yang K, Chi T, Liao Z, Wei P (2021) PPAR-α modulators as current and potential cancer treatments. Front Oncol 11:599995

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gao J, Gu Z (2022) The role of peroxisome proliferator-activated receptors in kidney diseases. Front Pharmacol 13:832732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gessel MM, Spraggins JM, Voziyan PA, Abrahamson DR, Caprioli RM, Hudson BG (2019) Two specific sulfatide species are dysregulated during renal development in a mouse model of alport syndrome. Lipids 54:411–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gurgul-Convey E (2020) Sphingolipids in type 1 diabetes: focus on beta-cells. Cells. https://doi.org/10.3390/cells9081835

    Article  PubMed  PubMed Central  Google Scholar 

  14. McGonigal R, Barrie JA, Yao D, McLaughlin M, Cunningham ME, Rowan EG, Willison HJ (2019) Glial sulfatides and neuronal complex gangliosides are functionally interdependent in maintaining myelinating axon integrity. J Neurosci 39:63–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shaimardanova AA, Chulpanova DS, Solovyeva VV, Mullagulova AI, Kitaeva KV, Allegrucci C, Rizvanov AA (2020) Metachromatic leukodystrophy: diagnosis, modeling, and treatment approaches. Front Med (Lausanne) 7:576221

    Article  PubMed  Google Scholar 

  16. Kubaski F, Herbst ZM, Burin MG, Michelin-Tirelli K, Trapp FB, Gus R, Netto ABO, Brusius-Facchin AC, Leistner-Segal S, Sanseverino MT, de Souza CMF, Wilke M, Oliveira T, Magalhães JAA, Giugliani R (2022) Measurement of sulfatides in the amniotic fluid supernatant: a useful tool in the prenatal diagnosis of metachromatic leukodystrophy. JIMD Rep 63:162–167

    Article  PubMed  PubMed Central  Google Scholar 

  17. Olešová D, Majerová P, Hájek R, Piešťanský J, Brumarová R, Michalicová A, Jurkanin B, Friedecký D, Kováč A (2021) GM3 ganglioside linked to neurofibrillary pathology in a transgenic rat model for tauopathy. Int J Mol Sci. https://doi.org/10.3390/ijms222212581

    Article  PubMed  PubMed Central  Google Scholar 

  18. Qiu S, Palavicini JP, Wang J, Gonzalez NS, He S, Dustin E, Zou C, Ding L, Bhattacharjee A, Van Skike CE, Galvan V, Dupree JL, Han X (2021) Adult-onset CNS myelin sulfatide deficiency is sufficient to cause Alzheimer’s disease-like neuroinflammation and cognitive impairment. Mol Neurodegener 16:64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Si X, Li Y, Jiang Y, Shang W, Shui G, Lam SM, Blanchard C, Strappe P, Zhou Z (2019) γ-Aminobutyric acid attenuates high-fat diet-induced cerebral oxidative impairment via enhanced synthesis of hippocampal sulfatides. J Agric Food Chem 67:1081–1091

    Article  CAS  PubMed  Google Scholar 

  20. Meehan GR, McGonigal R, Cunningham ME, Wang Y, Barrie JA, Halstead SK, Gourlay D, Yao D, Willison HJ (2018) Differential binding patterns of anti-sulfatide antibodies to glial membranes. J Neuroimmunol 323:28–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Singh AK, Tripathi P, Cardell SL (2018) Type II NKT cells: an elusive population with immunoregulatory properties. Front Immunol 9:1969

    Article  PubMed  PubMed Central  Google Scholar 

  22. King LA, Lameris R, de Gruijl TD, van der Vliet HJ (2018) CD1d-invariant natural killer T cell-based cancer immunotherapy: alpha-galactosylceramide and beyond. Front Immunol 9:1519

    Article  PubMed  PubMed Central  Google Scholar 

  23. Terabe M, Berzofsky JA (2018) Tissue-specific roles of NKT cells in tumor immunity. Front Immunol 9:1838

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pan H, Zhang G, Nie H, Li S, He S, Yang J (2019) Sulfatide-activated type II NKT cells suppress immunogenic maturation of lung dendritic cells in murine models of asthma. Am J Physiol Lung Cell Mol Physiol 317:L578-l590

    Article  CAS  PubMed  Google Scholar 

  25. Li YR, Zhou Y, Wilson M, Kramer A, Hon R, Zhu Y, Fang Y, Yang L (2022) Tumor-localized administration of α-GalCer to recruit invariant natural killer T cells and enhance their antitumor activity against solid tumors. Int J Mol Sci 23(14):7547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ikeda M, Ide T, Matsushima S, Ikeda S, Okabe K, Ishikita A, Tadokoro T, Sada M, Abe K, Sato M, Hanada A, Arai S, Ohtani K, Nonami A, Mizuno S, Morimoto S, Motohashi S, Akashi K, Taniguchi M, Tsutsui H (2022) Immunomodulatory cell therapy using αGalCer-pulsed dendritic cells ameliorates heart failure in a murine dilated cardiomyopathy model. Circ Heart Fail. https://doi.org/10.1161/CIRCHEARTFAILURE.122.009366

    Article  PubMed  PubMed Central  Google Scholar 

  27. Jung HJ, Lee W, Shin JS, Lee SK, Lee JH (2021) The effects of NF-kB inhibition with p65-TMD-linked PTD on inflammatory responses at peri-implantitis sites. Inflammation 44:2291–2301

    Article  CAS  PubMed  Google Scholar 

  28. Kim HS, Han M, Park IH, Park CH, Kwak MS, Shin JS (2020) Sulfatide inhibits HMGB1 secretion by hindering toll-like receptor 4 localization within lipid rafts. Front Immunol 11:1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Su L, Athamna M, Wang Y, Wang J, Freudenberg M, Yue T, Wang J, Moresco EMY, He H, Zor T, Beutler B (2021) Sulfatides are endogenous ligands for the TLR4-MD-2 complex. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.2105316118

    Article  PubMed  PubMed Central  Google Scholar 

  30. Li G, Hu R, Guo Y, He L, Zuo Q, Wang Y (2019) Circulating sulfatide, a novel biomarker for ST-segment elevation myocardial infarction. J Atheroscler Thromb 26:84–92

    Article  PubMed  PubMed Central  Google Scholar 

  31. Guo R, Hu X, Yamada Y, Harada M, Nakajima T, Kashihara T, Yamada M, Aoyama T, Kamijo Y (2019) Effects of hypertension and antihypertensive treatments on sulfatide levels in serum and its metabolism. Hypertens Res 42:598–609

    Article  CAS  PubMed  Google Scholar 

  32. Lu Y, Harada M, Kamijo Y, Nakajima T, Tanaka N, Sugiyama E, Kyogashima M, Gonzalez FJ, Aoyama T (2019) Peroxisome proliferator-activated receptor α attenuates high-cholesterol diet-induced toxicity and pro-thrombotic effects in mice. Arch Toxicol 93:149–161

    Article  CAS  PubMed  Google Scholar 

  33. Husebo GR, Gabazza EC, D’Alessandro Gabazza C, Yasuma T, Toda M, Aanerud M, Nielsen R, Bakke PS, Eagan TML (2021) Coagulation markers as predictors for clinical events in COPD. Respirology 26:342–351

    Article  PubMed  Google Scholar 

  34. Nakayama M, Miyagawa H, Kuranami Y, Tsunooka-Ota M, Yamaguchi Y, Kojima-Aikawa K (2020) Annexin A4 inhibits sulfatide-induced activation of coagulation factor XII. J Thromb Haemost 18:1357–1369

    Article  CAS  PubMed  Google Scholar 

  35. Song W, Gottschalk CJ, Tang TX, Biscardi A, Ellena JF, Finkielstein CV, Brown AM, Capelluto DGS (2020) Structural, in silico, and functional analysis of a disabled-2-derived peptide for recognition of sulfatides. Sci Rep 10:13520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Montgomery MK, Bayliss J, Nie S, De Nardo W, Keenan SN, Miotto PM, Karimkhanloo H, Huang C, Schittenhelm RB, Don AS, Ryan A, Williamson NA, Ooi GJ, Brown WA, Burton PR, Parker BL, Watt MJ (2022) Deep proteomic profiling unveils arylsulfatase A as a non-alcoholic steatohepatitis inducible hepatokine and regulator of glycemic control. Nat Commun 13:1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kanbe H, Kamijo Y, Nakajima T, Tanaka N, Sugiyama E, Wang L, Fang ZZ, Hara A, Gonzalez FJ, Aoyama T (2014) Chronic ethanol consumption decreases serum sulfatide levels by suppressing hepatic cerebroside sulfotransferase expression in mice. Arch Toxicol 88:367–379

    Article  CAS  PubMed  Google Scholar 

  38. Nakashima K, Hirahara Y, Koike T, Tanaka S, Gamo K, Oe S, Hayashi S, Seki-Omura R, Nakano Y, Ohe C, Yoshida T, Kataoka Y, Tsuda M, Yamashita T, Honke K, Kitada M (2022) Sulfatide with ceramide composed of phytosphingosine (t18:0) and 2-hydroxy FAs in renal intercalated cells. J Lipid Res 63:100210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yamada Y, Harada M, Hashimoto K, Guo R, Nakajima T, Kashihara T, Yamada M, Aoyama T, Kamijo Y (2019) Impact of chronic kidney dysfunction on serum sulfatides and its metabolic pathway in mice. Glycoconj J 36:1–11

    Article  PubMed  Google Scholar 

  40. Boslem E, Meikle PJ, Biden TJ (2012) Roles of ceramide and sphingolipids in pancreatic beta-cell function and dysfunction. Islets 4:177–187

    Article  PubMed  PubMed Central  Google Scholar 

  41. Oberhauser L, Maechler P (2021) Lipid-induced adaptations of the pancreatic beta-cell to glucotoxic conditions sustain insulin secretion. Int J Mol Sci 23(1):324

    Article  PubMed  PubMed Central  Google Scholar 

  42. Buschard K, Bracey AW, McElroy DL, Magis AT, Osterbye T, Atkinson MA, Bailey KM, Posgai AL, Ostrov DA (2016) Sulfatide preserves insulin crystals not by being integrated in the lattice but by stabilizing their surface. J Diabetes Res 2016:6179635

    Article  PubMed  PubMed Central  Google Scholar 

  43. Rhost S, Lofbom L, Mansson J, Lehuen A, Blomqvist M, Cardell SL (2014) Administration of sulfatide to ameliorate type I diabetes in non-obese diabetic mice. Scand J Immunol 79:260–266

    Article  CAS  PubMed  Google Scholar 

  44. Robinson CM, Poon BPK, Kano Y, Pluthero FG, Kahr WHA, Ohh M (2019) A hypoxia-inducible HIF1-GAL3ST1-sulfatide axis enhances ccRCC immune evasion via increased tumor cell-platelet binding. Mol Cancer Res 17:2306–2317

    Article  CAS  PubMed  Google Scholar 

  45. Cai QQ, Dong YW, Qi B, Shao XT, Wang R, Chen ZY, He BM, Wu XZ (2018) BRD1-mediated acetylation promotes integrin αV gene expression via interaction with sulfatide. Mol Cancer Res 16:610–622

    Article  CAS  PubMed  Google Scholar 

  46. Meng Q, Hu X, Zhao X, Kong X, Meng YM, Chen Y, Su L, Jiang X, Qiu X, Huang C, Liu C, Wang M, Wong PP (2021) A circular network of coregulated sphingolipids dictates lung cancer growth and progression. EBioMedicine 66:103301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Porubsky S, Nientiedt M, Kriegmair MC, Siemoneit JH, Sandhoff R, Jennemann R, Borgmann H, Gaiser T, Weis CA, Erben P, Hielscher T, Popovic ZV (2021) The prognostic value of galactosylceramide-sulfotransferase (Gal3ST1) in human renal cell carcinoma. Sci Rep 11:10926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Byrne FL, Olzomer EM, Lolies N, Hoehn KL, Wegner MS (2022) Update on glycosphingolipids abundance in hepatocellular carcinoma. Int J Mol Sci. https://doi.org/10.3390/ijms23094477

    Article  PubMed  PubMed Central  Google Scholar 

  49. Tahri-Joutey M, Andreoletti P, Surapureddi S, Nasser B, Cherkaoui-Malki M, Latruffe N (2021) Mechanisms mediating the regulation of peroxisomal fatty acid beta-oxidation by PPARα. Int J Mol Sci. https://doi.org/10.3390/ijms22168969

    Article  PubMed  PubMed Central  Google Scholar 

  50. Crakes KR, Pires J, Quach N, Ellis-Reis RE, Greathouse R, Chittum KA, Steiner JM, Pesavento P, Marks SL, Dandekar S, Gilor C (2021) Fenofibrate promotes PPARα-targeted recovery of the intestinal epithelial barrier at the host-microbe interface in dogs with diabetes mellitus. Sci Rep 11:13454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sheng X, Nakajima T, Wang L, Zhang X, Kamijo Y, Takahashi K, Tanaka N, Sugiyama E, Kyogashima M, Aoyama T, Hara A (2012) Attenuation of kidney injuries maintains serum sulfatide levels dependent on hepatic synthetic ability: a possible involvement of oxidative stress. Tohoku J Exp Med 227:1–12

    Article  CAS  PubMed  Google Scholar 

  52. Kimura T, Nakajima T, Kamijo Y, Tanaka N, Wang L, Hara A, Sugiyama E, Tanaka E, Gonzalez FJ, Aoyama T (2012) Hepatic cerebroside sulfotransferase is induced by PPARα activation in mice. PPAR Res 2012:174932

    Article  PubMed  PubMed Central  Google Scholar 

  53. Tian Y, Yang Y, Zhang X, Nakajima T, Tanaka N, Sugiyama E, Kamijo Y, Lu Y, Moriya K, Koike K, Gonzalez FJ, Aoyama T (2016) Age-dependent PPARalpha activation induces hepatic sulfatide accumulation in transgenic mice carrying the hepatitis C virus core gene. Glycoconj J 33:927–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Suchanski J, Grzegrzolka J, Owczarek T, Pasikowski P, Piotrowska A, Kocbach B, Nowak A, Dziegiel P, Wojnar A, Ugorski M (2018) Sulfatide decreases the resistance to stress-induced apoptosis and increases P-selectin-mediated adhesion: a two-edged sword in breast cancer progression. Breast Cancer Res 20:133

    Article  PubMed  PubMed Central  Google Scholar 

  55. Zheng RH, Zhang YB, Qiu FN, Liu ZH, Han Y, Huang R, Zhao Y, Yao P, Qiu Y, Ren J (2021) NF-κB pathway play a role in SCD1 deficiency-induced ceramide de novo synthesis. Cancer Biol Ther 22:164–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Marsching C, Rabionet M, Mathow D, Jennemann R, Kremser C, Porubsky S, Bolenz C, Willecke K, Gröne HJ, Hopf C, Sandhoff R (2014) Renal sulfatides: sphingoid base-dependent localization and region-specific compensation of CerS2-dysfunction. J Lipid Res 55:2354–2369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Novakova L, Singh AK, Axelsson M, Ståhlman M, Adiels M, Malmeström C, Zetterberg H, Borén J, Lycke J, Cardell SL, Blomqvist M (2018) Sulfatide isoform pattern in cerebrospinal fluid discriminates progressive MS from relapsing-remitting MS. J Neurochem 146:322–332

    Article  CAS  PubMed  Google Scholar 

  58. Peterson LR, Jiang X, Chen L, Goldberg AC, Farmer MS, Ory DS, Schaffer JE (2020) Alterations in plasma triglycerides and ceramides: links with cardiac function in humans with type 2 diabetes. J Lipid Res 61:1065–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kowluru RA (2023) Cross talks between oxidative stress, inflammation and epigenetics in diabetic retinopathy. Cells 12(2):300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Deng X, Ouyang P, Xu W, Yang E, Bao Z, Wu Y, Gong J, Pan J (2022) Research progress of nano selenium in the treatment of oxidative stress injury during hepatic ischemia-reperfusion injury. Front Pharmacol 13:1103483

    Article  CAS  PubMed  Google Scholar 

  61. Korbecki J, Bobiński R, Dutka M (2019) Self-regulation of the inflammatory response by peroxisome proliferator-activated receptors. Inflamm Res 68:443–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

TL, GL and RH together wrote the first manuscript and are the major contributor in this paper. XJ, CL and YS substantively revised it. All authors have approved the submitted version.

Corresponding author

Correspondence to Rui Hu.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Tt., Li, G., Hu, R. et al. Relationship of Sulfatides Physiological Function and Peroxisome Proliferator-Activated Receptor α. Neurochem Res 48, 2059–2065 (2023). https://doi.org/10.1007/s11064-023-03895-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-023-03895-y

Keywords

Navigation