Skip to main content

Advertisement

Log in

Naringenin Attenuates Cognitive Impairment in a Rat Model of Vascular Dementia by Inhibiting Hippocampal Oxidative Stress and Inflammatory Response and Promoting N-Methyl-D-Aspartate Receptor Signaling Pathway

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Vascular dementia (VaD) is the second most common form of dementia globally, yet there are no efficient treatments. Naringenin, a natural flavonoid, exerts antioxidative, anti-inflammatory, and neuroprotective properties; however, its potential effect on VaD remain unclear. Herein, the purpose of present study was to elucidate whether naringenin attenuates cognitive dysfunction in VaD via inhibiting hippocampal oxidative stress and inflammatory response, and promoting N-methyl-D-aspartate receptors (NMDARs) signaling pathway. A rat model of VaD was established by permanent bilateral common carotid artery occlusion [2-vessel occlusion (2VO)]. Behavioral performance analyses results revealed that administration of naringenin improves cognitive impairment in rats with VaD according to the new object recognition test and the Morris water maze test. In addition, naringenin attenuated hippocampal oxidative stress by reducing reactive oxygen species generation, decreasing malondialdehyde content and recombinant reactive oxygen species modulator 1 (Romo-1) expression, and increasing superoxide dismutase and glutathione peroxidase activities in the hippocampus of VaD rats. Moreover, naringenin decreased the proinflammatory cytokines (IL-1β, IL-6, and TNF-α) levels and increased the anti-inflammatory cytokines (IL-10 and IL-4) levels in the hippocampus of 2VO surgery-treated rats, attenuating hippocampal inflammatory response during VaD. Furthermore, naringenin promoted synaptophysin (SYP), postsynaptic density protein 95 (PSD95), N-methyl-Daspartic acid receptor 1 (NR1) and N-methyl-D-aspartate receptor subunit 2B (NR2B) expressions levels in hippocampus of VaD rats. Collectively, these findings indicated that naringenin mitigates cognitive impairment in VaD rats partly via inhibiting hippocampal oxidative stress and inflammatory response and restoring NMDARs signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. O’Brien JT, Thomas A (2015) Vascular dementia. Lancet 386:1698–1706

    Article  PubMed  Google Scholar 

  2. Kalaria RN (2018) The pathology and pathophysiology of vascular dementia. Neuropharmacology 134:226–239

    Article  CAS  PubMed  Google Scholar 

  3. Iadecola C (2013) The pathobiology of vascular dementia. Neuron 80:844–866

    Article  CAS  PubMed  Google Scholar 

  4. Sun MK (2018) Potential therapeutics for vascular cognitive impairment and dementia. Curr Neuropharmacol 16:1036–1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kuang H, Zhou ZF, Zhu YG, Wan ZK, Yang MW, Hong FF, Yang SL (2021) Pharmacological treatment of vascular dementia: a molecular mechanism perspective. Aging Dis 12:308–326

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wang XX, Zhang B, Xia R, Jia QY (2020) Inflammation, apoptosis and autophagy as critical players in vascular dementia. Eur Rev Med Pharmacol Sci 24:9601–9614

    PubMed  Google Scholar 

  7. Liu H, Zhang J (2012) Cerebral hypoperfusion and cognitive impairment: the pathogenic role of vascular oxidative stress. Int J Neurosci 122:494–499

    Article  CAS  PubMed  Google Scholar 

  8. Wang P, Wang F, Ni L, Wu P, Chen J (2021) Targeting redox-altered plasticity to reactivate synaptic function: a novel therapeutic strategy for cognitive disorder. Acta Pharm Sin B 11:599–608

    Article  CAS  PubMed  Google Scholar 

  9. Paoletti P, Bellone C, Zhou Q (2013) NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci 14:383–400

    Article  CAS  PubMed  Google Scholar 

  10. Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH (1994) Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12:529–540

    Article  CAS  PubMed  Google Scholar 

  11. Zhu S, Stein RA, Yoshioka C, Lee CH, Goehring A, McHaourab HS, Gouaux E (2016) Mechanism of NMDA receptor inhibition and activation. Cell 165:704–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vyklicky V, Korinek M, Smejkalova T, Balik A, Krausova B, Kaniakova M, Lichnerova K, Cerny J, Krusek J, Dittert I, Horak M, Vyklicky L (2014) Structure, function, and pharmacology of NMDA receptor channels. Physiol Res 63:S191–S203

    Article  CAS  PubMed  Google Scholar 

  13. Yin YL, Liu YH, Zhu ML, Wang HH, Qiu Y, Wan GR, Li P (2022) Floralozone improves cognitive impairment in vascular dementia rats via regulation of TRPM2 and NMDAR signaling pathway. Physiol Behav 249:113777

    Article  CAS  PubMed  Google Scholar 

  14. Gao Q, Tian DF, Zhang DD, Guo YY, Lin JF, Liu GL, Chang Z, Wang YC, Han ZY (2021) Tongluo Huatan capsule improves cognitive function by regulating the endocytosis of N-methyl-D-aspartic acid receptors mediated by clathrin in a rat model of vascular dementia. J Tradit Chin Med 41:771–778

    PubMed  Google Scholar 

  15. Zhang N, Xing M, Wang Y, Liang H, Yang Z, Shi F, Cheng Y (2014) Hydroxysafflor yellow A improves learning and memory in a rat model of vascular dementia by increasing VEGF and NR1 in the hippocampus. Neurosci Bull 30:417–424

    Article  CAS  PubMed  Google Scholar 

  16. Zong MM, Zhou ZQ, Ji MH, Jia M, Tang H, Yang JJ (2019) Activation of beta2-adrenoceptor attenuates sepsis-induced hippocampus-dependent cognitive impairments by reversing neuroinflammation and synaptic abnormalities. Front Cell Neurosci 13:293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kumar A, Rani A, Scheinert RB, Ormerod BK, Foster TC (2018) Nonsteroidal anti-inflammatory drug, indomethacin improves spatial memory and NMDA receptor function in aged animals. Neurobiol Aging 70:184–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mir IA, Tiku AB (2015) Chemopreventive and therapeutic potential of “naringenin,” a flavanone present in citrus fruits. Nutr Cancer 67:27–42

    Article  CAS  PubMed  Google Scholar 

  19. Nouri Z, Fakhri S, El-Senduny FF, Sanadgol N, Abd-ElGhani GE, Farzaei MH, Chen JT (2019) On the neuroprotective effects of naringenin: pharmacological targets, signaling pathways, molecular mechanisms, and clinical perspective. Biomolecules 9:690

    Article  CAS  PubMed Central  Google Scholar 

  20. Krishna Chandran AM, Christina H, Das S, Mumbrekar KD, Satish Rao BS (2019) Neuroprotective role of naringenin against methylmercury induced cognitive impairment and mitochondrial damage in a mouse model. Environ Toxicol Pharmacol 71:103224

    Article  CAS  PubMed  Google Scholar 

  21. Khan MB, Khan MM, Khan A, Ahmed ME, Ishrat T, Tabassum R, Vaibhav K, Ahmad A, Islam F (2012) Naringenin ameliorates Alzheimer’s disease (AD)-type neurodegeneration with cognitive impairment (AD-TNDCI) caused by the intracerebroventricular-streptozotocin in rat model. Neurochem Int 61:1081–1093

    Article  CAS  PubMed  Google Scholar 

  22. Khajevand-Khazaei MR, Ziaee P, Motevalizadeh SA, Rohani M, Afshin-Majd S, Baluchnejadmojarad T, Roghani M (2018) Naringenin ameliorates learning and memory impairment following systemic lipopolysaccharide challenge in the rat. Eur J Pharmacol 826:114–122

    Article  CAS  PubMed  Google Scholar 

  23. Sarubbo F, Ramis MR, Kienzer C, Aparicio S, Esteban S, Miralles A, Moranta D (2018) Chronic silymarin, quercetin and naringenin treatments increase monoamines synthesis and hippocampal Sirt1 levels improving cognition in aged rats. J Neuroimmune Pharmacol 13:24–38

    Article  CAS  PubMed  Google Scholar 

  24. Speetzen LJ, Endres M, Kunz A (2013) Bilateral common carotid artery occlusion as an adequate preconditioning stimulus to induce early ischemic tolerance to focal cerebral ischemia. J Vis Exp. https://doi.org/10.3791/4387

    Article  PubMed  PubMed Central  Google Scholar 

  25. Liaquat L, Batool Z, Sadir S, Rafiq S, Shahzad S, Perveen T, Haider S (2018) Naringenin-induced enhanced antioxidant defence system meliorates cholinergic neurotransmission and consolidates memory in male rats. Life Sci 194:213–223

    Article  CAS  PubMed  Google Scholar 

  26. Yang Y, Wu Y, Zou J, Wang YH, Xu MX, Huang W, Yu DJ, Zhang L, Zhang YY, Sun XD (2021) Naringenin attenuates non-alcoholic fatty liver disease by enhancing energy expenditure and regulating autophagy via AMPK. Front Pharmacol 12:687095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yu LM, Dong X, Zhang J, Li Z, Xue XD, Wu HJ, Yang ZL, Yang Y, Wang HS (2019) Naringenin attenuates myocardial ischemia-reperfusion injury via cGMP-PKGIalpha signaling and in vivo and in vitro studies. Oxid Med Cell Longev 2019:7670854

    Article  PubMed  PubMed Central  Google Scholar 

  28. Al-Dosari DI, Ahmed MM, Al-Rejaie SS, Alhomida AS, Ola MS (2017) Flavonoid naringenin attenuates oxidative stress, apoptosis and improves neurotrophic effects in the diabetic rat retina. Nutrients 9:1161

    Article  PubMed Central  Google Scholar 

  29. Antunes M, Biala G (2012) The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn Process 13:93–110

    Article  CAS  PubMed  Google Scholar 

  30. Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1:848–858

    Article  PubMed  PubMed Central  Google Scholar 

  31. Czerska M, Mikolajewska K, Zielinski M, Gromadzinska J, Wasowicz W (2015) Today’s oxidative stress markers. Med Pr 66:393–405

    Article  PubMed  Google Scholar 

  32. Wang L, Yang JW, Lin LT, Huang J, Wang XR, Su XT, Cao Y, Fisher M, Liu CZ (2020) Acupuncture attenuates inflammation in microglia of vascular dementia rats by inhibiting miR-93-mediated TLR4/MyD88/NF-kappaB signaling pathway. Oxid Med Cell Longev 2020:8253904

    PubMed  PubMed Central  Google Scholar 

  33. Belkhelfa M, Beder N, Mouhoub D, Amri M, Hayet R, Tighilt N, Bakheti S, Laimouche S, Azzouz D, Belhadj R, Touil-Boukoffa C (2018) The involvement of neuroinflammation and necroptosis in the hippocampus during vascular dementia. J Neuroimmunol 320:48–57

    Article  CAS  PubMed  Google Scholar 

  34. Sharifi MD, Karimi N, Karami M, Borhani Haghighi A, Shabani M, Bayat M (2021) The minocycline ameliorated the synaptic plasticity impairment in vascular dementia. Iran J Pharm Res 20:435–449

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu X, Liu M, Mo Y, Peng H, Gong J, Li Z, Chen J, Xie J (2016) Naringin ameliorates cognitive deficits in streptozotocin-induced diabetic rats. Iran J Basic Med Sci 19:417–422

    PubMed  PubMed Central  Google Scholar 

  36. Yang W, Zhou K, Zhou Y, An Y, Hu T, Lu J, Huang S, Pei G (2018) Naringin dihydrochalcone ameliorates cognitive deficits and neuropathology in APP/PS1 transgenic mice. Front Aging Neurosci 10:169

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chtourou Y, Gargouri B, Kebieche M, Fetoui H (2015) Naringin abrogates cisplatin-induced cognitive deficits and cholinergic dysfunction through the down-regulation of AChE expression and iNOS signaling pathways in hippocampus of aged rats. J Mol Neurosci 56:349–362

    Article  CAS  PubMed  Google Scholar 

  38. Rosenberg GA (2018) Binswanger’s disease: biomarkers in the inflammatory form of vascular cognitive impairment and dementia. J Neurochem 144:634–643

    Article  CAS  PubMed  Google Scholar 

  39. Guo T, Fang J, Tong ZY, He S, Luo Y (2020) Transcranial direct current stimulation ameliorates cognitive impairment via modulating oxidative stress, inflammation, and autophagy in a rat model of vascular dementia. Front Neurosci 14:28

    Article  PubMed  PubMed Central  Google Scholar 

  40. Du SQ, Wang XR, Zhu W, Ye Y, Yang JW, Ma SM, Ji CS, Liu CZ (2018) Acupuncture inhibits TXNIP-associated oxidative stress and inflammation to attenuate cognitive impairment in vascular dementia rats. CNS Neurosci Ther 24:39–46

    Article  CAS  PubMed  Google Scholar 

  41. Xu JJ, Guo S, Xue R, Xiao L, Kou JN, Liu YQ, Han JY, Fu JJ, Wei N (2021) Adalimumab ameliorates memory impairments and neuroinflammation in chronic cerebral hypoperfusion rats. Aging 13:14001–14014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ali MY, Sina AA, Khandker SS, Neesa L, Tanvir EM, Kabir A, Khalil MI, Gan SH (2020) Nutritional composition and bioactive compounds in tomatoes and their impact on human health and disease: a review. Foods 10:45

    Article  PubMed Central  Google Scholar 

  43. Hua FZ, Ying J, Zhang J, Wang XF, Hu YH, Liang YP, Liu Q, Xu GH (2016) Naringenin pre-treatment inhibits neuroapoptosis and ameliorates cognitive impairment in rats exposed to isoflurane anesthesia by regulating the PI3/Akt/PTEN signalling pathway and suppressing NF-kappaB-mediated inflammation. Int J Mol Med 38:1271–1280

    Article  CAS  PubMed  Google Scholar 

  44. Yan N, Xu Z, Qu C, Zhang J (2021) Dimethyl fumarate improves cognitive deficits in chronic cerebral hypoperfusion rats by alleviating inflammation, oxidative stress, and ferroptosis via NRF2/ARE/NF-kappaB signal pathway. Int Immunopharmacol 98:107844

    Article  CAS  PubMed  Google Scholar 

  45. Li T, Wu YN, Wang H, Ma JY, Zhai SS, Duan J (2020) Dapk1 improves inflammation, oxidative stress and autophagy in LPS-induced acute lung injury via p38MAPK/NF-kappaB signaling pathway. Mol Immunol 120:13–22

    Article  CAS  PubMed  Google Scholar 

  46. Jiang H, Ashraf GM, Liu M, Zhao K, Wang Y, Wang L, Xing J, Alghamdi BS, Li Z, Liu R (2021) Tilianin ameliorates cognitive dysfunction and neuronal damage in rats with vascular dementia via p-CaMKII/ERK/CREB and ox-CaMKII-Dependent MAPK/NF-kappaB pathways. Oxid Med Cell Longev 2021:6673967

    Article  PubMed  PubMed Central  Google Scholar 

  47. Yang T, Zhang F (2021) Targeting transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) for the intervention of vascular cognitive impairment and dementia. Arterioscler Thromb Vasc Biol 41:97–116

    CAS  PubMed  Google Scholar 

  48. Franchini L, Carrano N, Di Luca M, Gardoni F (2020) Synaptic GluN2A-containing NMDA receptors: from physiology to pathological synaptic plasticity. Int J Mol Sci 21:1538

    Article  CAS  PubMed Central  Google Scholar 

  49. Baez MV, Cercato MC, Jerusalinsky DA (2018) NMDA receptor subunits change after synaptic plasticity induction and learning and memory acquisition. Neural Plast 2018:5093048

    Article  PubMed  PubMed Central  Google Scholar 

  50. Busse M, Kunschmann R, Dobrowolny H, Hoffmann J, Bogerts B, Steiner J, Frodl T, Busse S (2018) Dysfunction of the blood-cerebrospinal fluid-barrier and N-methyl-D-aspartate glutamate receptor antibodies in dementias. Eur Arch Psychiatry Clin Neurosci 268:483–492

    Article  PubMed  Google Scholar 

  51. Li P, Zhu ML, Pan GP, Lu JX, Zhao FR, Jian X, Liu LY, Wan GR, Chen Y, Ping S, Wang SX, Hu CP (2018) Vitamin B6 prevents isocarbophos-induced vascular dementia in rats through N-methyl-D-aspartate receptor signaling. Clin Exp Hypertens 40:192–201

    Article  CAS  PubMed  Google Scholar 

  52. Zhang N, Xing M, Wang Y, Tao H, Cheng Y (2015) Repetitive transcranial magnetic stimulation enhances spatial learning and synaptic plasticity via the VEGF and BDNF-NMDAR pathways in a rat model of vascular dementia. Neuroscience 311:284–291

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Shanxi Province (No. 201801D121225) and the Institute for Study Abroad Foundation of Shanxi Province (No. 2018123).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyuan Niu.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zhang, Y., Liu, Y. et al. Naringenin Attenuates Cognitive Impairment in a Rat Model of Vascular Dementia by Inhibiting Hippocampal Oxidative Stress and Inflammatory Response and Promoting N-Methyl-D-Aspartate Receptor Signaling Pathway. Neurochem Res 47, 3402–3413 (2022). https://doi.org/10.1007/s11064-022-03696-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03696-9

Keywords

Navigation