Skip to main content

Advertisement

Log in

Exogenous Tetranectin Alleviates Pre-formed-fibrils-induced Synucleinopathies in SH-SY5Y Cells by Activating the Plasminogen Activation System

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a common neurodegenerative disease. Previously we identified tetranectin (TN) as a differentially expressed protein in the cerebrospinal fluid of PD patients, and we were surprised to find that TN knockout mice developed PD features. However, the specific role of TN in PD has not been clarified. In this study, we aimed to determine the effect of exogenous TN on cellular PD models and elucidate the underlying mechanisms. We found that exogenous TN could alleviate pre-formed-fibrils (PFFs)-induced synucleinopathies in SH-SY5Y cells and reduce the cell-to-cell transmission of α-synuclein (SYN). We also found that TN can promote the degradation of SYN by plasmin, which may account for its effect on cellular PD models. Moreover, administration of SYN/PFFs decreased the expression of TN and increased the expression of plasminogen activator inhibitor-1 (PAI-1) in SH-SY5Y cells, thereby reducing plasmin activity. Our findings depict a possible SYN-TN-plasmin interaction in which elevated levels of extracellular SYN monomers and aggregates in PD diminish the production of TN and PAI-1. Such changes lead to a reduced plasmin activity, which in turn reduces the degradation of extracellular SYN, thus forming a vicious cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Relevant data and materials in the current study are available from the corresponding author on reasonable request.

Abbreviations

PD:

Parkinson’s disease

PFF(s):

Pre-formed Fibrils

TN:

Tetranectin

eTN:

Exogenous tetranectin

SYN:

α-Synuclein

SNc:

Substantia Nigra Pars Compacta

LBs:

Lewy Bodies

CSF:

Cerebrospinal fluid

PAI-1:

Plasminogen activator inhibitor-1

PLN:

Plasmin

PLG:

Plasminogen

PAS:

Plasminogen activation system

t-PA:

Tissue-type plasminogen activator

u-PA:

Urine plasminogen activator

CNS:

Central nervous system

WT:

Wild type

pS129:

α-Synuclein phosphorylated at serine 129

MMP-3:

Matrix metalloproteinases-3

References

  1. Lippa CF et al (1998) Lewy bodies contain altered alpha-synuclein in brains of many familial Alzheimer’s disease patients with mutations in presenilin and amyloid precursor protein genes. Am J Pathol 153(5):1365–1370

    Article  CAS  Google Scholar 

  2. Vázquez-Vélez GE, Zoghbi HY (2021) Parkinson’s disease genetics and pathophysiology. Ann Rev Neurosci 44:87–108

    Article  Google Scholar 

  3. Jankovic J, Tan EK (2020) Parkinson’s disease: etiopathogenesis and treatment. J Neurol Neurosurg Psychiatr 91(8):795–808

    Article  Google Scholar 

  4. Kordower JH et al (2008) Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med 14(5):504–506

    Article  CAS  Google Scholar 

  5. Li J-Y et al (2008) Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med 14(5):501–503

    Article  CAS  Google Scholar 

  6. Desplats P et al (2009) Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. Proc Natl Acad Sci USA 106(31):13010–13015

    Article  CAS  Google Scholar 

  7. Wang ES et al (2010) Tetranectin and apolipoprotein A-I in cerebrospinal fluid as potential biomarkers for Parkinson’s disease. Acta Neurol Scand 122(5):350–359

    CAS  PubMed  Google Scholar 

  8. Wang E-S et al (2013) Proteomic analysis of the cerebrospinal fluid of Parkinson’s disease patients pre- and post-deep brain stimulation. Cell Physiol Biochem 31(4–5):625–637

    Article  Google Scholar 

  9. Wang E-S et al (2014) Tetranectin knockout mice develop features of Parkinson disease. Cell Physiol Biochem 34(2):277–287

    Article  CAS  Google Scholar 

  10. Clemmensen I, Petersen L, Kluft C (1986) Purification and characterization of a novel, oligomeric, plasminogen kringle 4 binding protein from human plasma: tetranectin. Eur J Biochem 156(2):327–333

    Article  CAS  Google Scholar 

  11. Stoevring B et al (2005) Tetranectin in cerebrospinal fluid: biochemical characterisation and evidence of intrathecal synthesis or selective uptake into CSF. Clin Chim Acta 359:65–71

    Article  CAS  Google Scholar 

  12. Abdi F et al (2006) Detection of biomarkers with a multiplex quantitative proteomic platform in cerebrospinal fluid of patients with neurodegenerative disorders. J Alzheimer’s Dis 9(3):293–348

    Article  CAS  Google Scholar 

  13. Wang L et al (2010) Tetranectin is a potential biomarker in cerebrospinal fluid and serum of patients with epilepsy. Clin Chim Acta 411(7–8):581–583

    Article  CAS  Google Scholar 

  14. Li P et al (2021) Enhancer RNA SLIT2 inhibits bone metastasis of breast cancer through regulating P38 MAPK/c-Fos signaling pathway. Front Oncol 11:743840

    Article  Google Scholar 

  15. Wang X et al (2021) Identification and validation of a five-gene signature associated with overall survival in breast cancer patients. Front Oncol 11:660242

    Article  Google Scholar 

  16. Xie X-W, Jiang S-S, Li X (2020) CLEC3B as a potential prognostic biomarker in hepatocellular carcinoma. Front Mol Biosci 7:614034

    Article  CAS  Google Scholar 

  17. Chen W et al (2020) Identification of tetranectin-targeting monoclonal antibodies to treat potentially lethal sepsis. Sci Trans Med. https://doi.org/10.1126/scitranslmed.aaz3833

    Article  Google Scholar 

  18. Paterson C, Ford M, Coopersmith C (2020) Breaking the bond between tetranectin and HMGB1 in sepsis. Sci Trans Med. https://doi.org/10.1126/scitranslmed.abb2575

    Article  Google Scholar 

  19. Crunkhorn S (2020) Antibody intervention rescues mice from sepsis. Nat Rev Drug Discovery 19(6):385

    Article  CAS  Google Scholar 

  20. Westergaard U et al (2003) Tetranectin binds hepatocyte growth factor and tissue-type plasminogen activator. Eur J Biochem 270(8):1850–1854

    Article  CAS  Google Scholar 

  21. Vassalli JD, Sappino AP, Belin D (1991) The plasminogen activator/plasmin system. J Clin Investig 88(4):1067–1072

    Article  CAS  Google Scholar 

  22. Mehra A et al (2016) The plasminogen activation system in neuroinflammation. Biochem Biophys Acta 1862(3):395–402

    CAS  PubMed  Google Scholar 

  23. Chevilley A et al (2015) Impacts of tissue-type plasminogen activator (tPA) on neuronal survival. Front Cell Neurosci 9:415

    Article  Google Scholar 

  24. Xu Q et al (2021) Association between plasminogen activator inhibitor-1 gene polymorphisms and susceptibility to Parkinson’s disease in Chinese patients. Acta Neurol Belg. https://doi.org/10.1007/s13760-021-01843-7

    Article  PubMed  Google Scholar 

  25. Pan H et al (2018) Role of plasminogen activator inhibitor-1 in the diagnosis and prognosis of patients with Parkinson’s disease. Exp Ther Med 15(6):5517–5522

    PubMed  PubMed Central  Google Scholar 

  26. Sharma A et al (2021) Comprehensive profiling of blood coagulation and fibrinolysis marker reveals elevated plasmin-antiplasmin complexes in Parkinson’s disease. Biology 10(8):716

    Article  CAS  Google Scholar 

  27. The Michael J. Fox Foundation. (2017) Protocol for generation of pre-formed fibrils from alpha-synuclein monomer. Protocol [Internet]. Accessed 13 May 2022 from https://www.michaeljfox.org/sites/default/files/media/document/PFF%20Protocol%202017b.pdf

  28. Lee BR, Kamitani T (2011) Improved immunodetection of endogenous α-synuclein. PLoS ONE 6(8):e23939

    Article  CAS  Google Scholar 

  29. Volpicelli-Daley LA et al (2011) Exogenous α-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 72(1):57–71

    Article  CAS  Google Scholar 

  30. Kim K et al (2012) Proteolytic cleavage of extracellular α-synuclein by plasmin: implications for Parkinson disease. J Biol Chem 287(30):24862–24872

    Article  CAS  Google Scholar 

  31. Hébert M et al (2016) The story of an exceptional serine protease, tissue-type plasminogen activator (tPA). Revue Neurologique 172(3):186–197

    Article  Google Scholar 

  32. Xie Q et al (2019) Exogenous tetranectin protects against 1-methyl-4-phenylpyridine-induced neurotoxicity by inhibiting apoptosis and autophagy through ribosomal protein S6 kinase beta-1. World Neurosurg 122:e375–e382

    Article  Google Scholar 

  33. Zhang Y et al (2014) An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 34(36):11929–11947

    Article  CAS  Google Scholar 

  34. Zhang Y et al (2016) Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron 89(1):37–53

    Article  CAS  Google Scholar 

  35. Choi D-H et al (2011) Role of matrix metalloproteinase 3-mediated alpha-synuclein cleavage in dopaminergic cell death. J Biol Chem 286(16):14168–14177

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by grants from the Health Commission of Jinshan District (Grant No. JSZK2019H02) to Ersong Wang, and the Science and Technology Commission of Jinshan District (Grant No. 2018-3-7) to Ri Tang.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the conception and design. HL: Performed the experiments and data analysis. EW and RT: Acquired the funding. HL: Wrote the first draft of the manuscript, and all authors commented on the previous version of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ersong Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 11570 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, H., Tang, R., Fan, L. et al. Exogenous Tetranectin Alleviates Pre-formed-fibrils-induced Synucleinopathies in SH-SY5Y Cells by Activating the Plasminogen Activation System. Neurochem Res 47, 3192–3201 (2022). https://doi.org/10.1007/s11064-022-03673-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03673-2

Keywords

Navigation