Skip to main content
Log in

α-Lipoic Acid, an Organosulfur Biomolecule a Novel Therapeutic Agent for Neurodegenerative Disorders: An Mechanistic Perspective

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Lipoic acid (α-LA) (1,2-dithiolane3-pentanoic acid (C8H14O2S2) is also called thioctic acid with an oxidized (disulfide, LA) and a reduced (di-thiol: dihydro-lipoic acid, DHLA) form of LA. α-LA is a potent anti-oxidative agent that has a significant potential to treat neurodegenerative disorders. α-LA is both hydrophilic and hydrophobic in nature. It is widely distributed in plants and animals in cellular membranes and in the cytosol, which is responsible for LA’s action in both the cytosol and plasma membrane. A systematic literature review of Bentham, Scopus, PubMed, Medline, and EMBASE (Elsevier) databases was carried out to understand the Nature and mechanistic interventions of the α-Lipoic acid for central nervous system diseases. Moreover, α-LA readily crosses the blood-brain barrier, which is a significant factor for CNS activities. The mechanisms of α-LA reduction are highly tissue-specific. α-LA produces its neuroprotective effect by inhibiting reactive oxygen species formation and neuronal damage, modulating protein levels, and promoting neurotransmitters and anti-oxidant levels. Hence, the execution of α-LA as a therapeutic ingredient in the therapy of neurodegenerative disorders is promising. Finally, based on evidence, it can be concluded that α-LA can prevent diseases related to the nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials:

Not applicable.

Abbreviations

α-LA:

Alpha lipoic acid

PD:

Parkinson’s disease

AD:

Alzheimer’s disease

SCI:

spinal cord injury

MDA:

Malondialdehyde

TBARS:

Thiobarbituric acid reactive substances

ROS:

Reactive oxygen species

NOS:

Nitric oxide synthase

MCAO:

Middle cerebral artery occlusion

SOD:

Superoxide Dismutase

ATP:

Adenosine triphosphate.

CIRI:

Cerebral ischemia and reperfusion injury

PGC1α:

Peroxisome proliferator-activated receptor-gamma coactivator

MS:

Multiple sclerosis

BBB:

Blood-brain barrier

DHLA:

Dihydrolipoic acid

References

  1. Park S, Karunakaran U, Ho Jeoung N, Jeon JH, Lee IK (2014) Physiological effect and therapeutic application of alpha lipoic acid. Curr Med Chem 21:3636–3645. doi: https://doi.org/10.2174/0929867321666140706141806

    Article  CAS  PubMed  Google Scholar 

  2. Gorąca A, Huk-Kolega H, Piechota A, Kleniewska P, Ciejka E, Skibska B (2011) Lipoic acid-biological activity and therapeutic potential. Pharmacol Rep 63:849–858. doi: https://doi.org/10.1016/s1734-1140(11)70600-4

    Article  PubMed  Google Scholar 

  3. Abdou RH, Abdel-Daim MM (2014) Alpha-lipoic acid improves acute deltamethrin-induced toxicity in rats. Can J Physiol Phar 92:773–779

    Article  CAS  Google Scholar 

  4. Ferreira PM, Militão GC, Freitas RM (2009) Lipoic acid effects on lipid peroxidation level, superoxide dismutase activity and monoamines concentration in rat hippocampus. Neurosci Lett 464:131–134. doi: https://doi.org/10.1016/j.neulet.2009.08.051

    Article  CAS  PubMed  Google Scholar 

  5. Molz P, Schröder N (2017) Potential therapeutic effects of lipoic acid on memory deficits related to aging and neurodegeneration. Front pharmacol 8:849. doi: https://doi.org/10.3389/fphar.2017.00849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kidd PM (2005) Neurodegeneration from mitochondrial insufficiency: nutrients, stem cells, growth factors, and prospects for brain rebuilding using integrative management. Altern Med Rev 10:268

    PubMed  Google Scholar 

  7. Shay KP, Moreau RF, Smith EJ, Smith AR, Hagen TM (2009) Alpha-lipoic acid as a dietary supplement: molecular mechanisms and therapeutic potential. Biochim Biophys Acta Gen Subj 1790:1149–1160. doi: https://doi.org/10.1016/j.bbagen.2009.07.026

    Article  CAS  Google Scholar 

  8. Salinthone S, Yadav V, Schillace RV, Bourdette DN, Carr DW (2010) Lipoic acid attenuates inflammation via cAMP and protein kinase A signaling. PLoS ONE 5:13058. https://doi.org/10.1371/journal.pone.0013058

    Article  CAS  Google Scholar 

  9. Khan H, Gupta A, Singh TG, Kaur A (2021) Mechanistic insight on the role of leukotriene receptors in ischemic–reperfusion injury. Pharmacol Rep 1–15. doi: https://doi.org/10.1007/s43440-021-00258-8

  10. Collins T, Read MA, Neish AS, Whitley MZ, Thanos D, Maniatis T (1995) Transcriptional regulation of endothelial cell adhesion molecules: NF-κB and cytokine‐inducible enhancers. FASEB J 9:899–909

    Article  CAS  Google Scholar 

  11. Khan H, Sharma K, Kumar A, Kaur A, Singh TG (2022) Therapeutic implications of cyclooxygenase (COX) inhibitors in ischemic injury. Inflamm Res 17:1–6. https://doi.org/10.1007/s00011-022-01546-6

    Article  CAS  Google Scholar 

  12. Zhang WJ, Frei B (2001) α-Lipoic acid inhibits TNF‐a‐induced NF‐κB activation and adhesion molecule expression in human aortic endothelial cells. FASEB J 15:2423–2432. doi: https://doi.org/10.1096/fj.01-0260com

    Article  CAS  PubMed  Google Scholar 

  13. White SW, Zheng J, Zhang YM, Rock CO (2005) The structural biology of type II fatty acid biosynthesis. Annu Rev Biochem 74:791–831. doi: https://doi.org/10.1146/annurev.biochem.74.082803.133524

    Article  CAS  PubMed  Google Scholar 

  14. Novotny L, Rauko P, Cojocel C (2008) alpha-Lipoic acid-the potential for use in cancer therapy Minireview. Neoplasma-Bratislava 55:81

    CAS  Google Scholar 

  15. Khan H, Garg N, Singh TG, Kaur A, Thapa K (2022) Calpain Inhibitors as Potential Therapeutic Modulators in Neurodegenerative Diseases. Neurochem Res 4:1–25. https://doi.org/10.1007/s11064-021-03521-9

    Article  CAS  Google Scholar 

  16. Zhang H, Jia H, Liu J, Ao N, Yan B, Shen W, Wang X, Li X, Luo C, Liu J (2010) Combined R-α–lipoic acid and acetyl‐L‐carnitine exerts efficient preventative effects in a cellular model of Parkinson’s disease. J Cell Mol Med 14:215–225. doi: https://doi.org/10.1111/j.1582-4934.2008.00390.x

    Article  CAS  PubMed  Google Scholar 

  17. Grewal AK, Singh N, Singh TG (2019) Effects of resveratrol postconditioning on cerebral ischemia in mice: role of the sirtuin-1 pathway. Can J Physiol Pharmacol 97:1094–1101

    Article  CAS  Google Scholar 

  18. Santos ÍM, Freitas RL, Saldanha GB, Tomé AD, Jordán J, Freitas RM (2010) Alterations on monoamines concentration in rat hippocampus produced by lipoic acid. Arq Neuropsiquiatr 68:362–366. https://doi.org/10.1590/S0004-282X2010000300006

    Article  PubMed  Google Scholar 

  19. Li DW, Li GR, Lu Y, Liu ZQ, Chang M, Yao M, Cheng W, Hu LS (2013) α-lipoic acid protects dopaminergic neurons against MPP+-induced apoptosis by attenuating reactive oxygen species formation. Int J Mol Med 32:108–114. doi: https://doi.org/10.3892/ijmm.2013.1361

    Article  CAS  PubMed  Google Scholar 

  20. Jalali-Nadoushan M, Roghani M (2013) Alpha-lipoic acid protects against 6-hydroxydopamine-induced neurotoxicity in a rat model of hemi-parkinsonism. Brain Res 1505:68–74. doi: https://doi.org/10.1016/j.brainres.2013.01.054

    Article  CAS  PubMed  Google Scholar 

  21. Karunakaran S, Diwakar L, Saeed U, Agarwal V, Ramakrishnan S, Iyengar S, Ravindranath V (2007) Activation of apoptosis signal regulating kinase 1 (ASK1) and translocation of death-associated protein, Daxx, in substantia nigra pars compacta in a mouse model of Parkinson’s disease: protection by α‐lipoic acid. FASEB J 21:2226–2236. doi: https://doi.org/10.1096/fj.06-7580com

    Article  CAS  PubMed  Google Scholar 

  22. Zhou L, Cheng Y (2019) Alpha-lipoic acid alleviated 6-OHDA-induced cell damage by inhibiting AMPK/mTOR mediated autophagy. Neuropharmacology 155:98–103

    Article  CAS  Google Scholar 

  23. Zaitone SA, Abo-Elmatty DM, Shaalan AA (2012) Acetyl-L-carnitine and α-lipoic acid affect rotenone-induced damage in nigral dopaminergic neurons of rat brain, implication for Parkinson’s disease therapy. Pharmacol Biochem Behav 100:347–360. doi: https://doi.org/10.1016/j.pbb.2011.09.002

    Article  CAS  PubMed  Google Scholar 

  24. Li YH, He Q, Yu JZ, Liu CY, Feng L, Chai Z, Wang Q, Zhang HZ, Zhang GX, Xiao BG, Ma CG (2015) Lipoic acid protects dopaminergic neurons in LPS-induced Parkinson’s disease model. Metab Brain Dis 30:1217–1226. doi: https://doi.org/10.1007/s11011-015-9698-5

    Article  CAS  PubMed  Google Scholar 

  25. Irwin MH, Moos WH, Faller DV, Steliou K, Pinkert CA (2016) Epigenetic treatment of neurodegenerative disorders: Alzheimer and Parkinson diseases. Drug Dev Res 77:109–123. doi: https://doi.org/10.1002/ddr.21294

    Article  CAS  PubMed  Google Scholar 

  26. Sharma V, Kaur A, Singh TG (2020) Counteracting role of nuclear factor erythroid 2-related factor 2 pathway in Alzheimer’s disease. Biomed Pharmacother 129:110373. doi: https://doi.org/10.1016/j.biopha.2020.110373

    Article  CAS  PubMed  Google Scholar 

  27. Sharma VK, Singh TG, Mehta V (2021) Stressed mitochondria: a target to intrude alzheimer’s disease. Mitochondrion. https://doi.org/10.1016/j.mito.2021.04.004

    Article  PubMed  Google Scholar 

  28. Mancuso M, Coppede F, Migliore L, Siciliano G, Murri L (2006) Mitochondrial dysfunction, oxidative stress and neurodegeneration. J Alzheimer’s Dis 10:59–73. doi: https://doi.org/10.3233/jad-2006-10110

    Article  CAS  Google Scholar 

  29. Nordberg A (1993) In Vivo Detection of Neurotransmitter Changes in Alzheimer’s Disease a. Ann. N. Y. Acad. Sci, 695:27–33. doi: https://doi.org/10.1111/j.1749-6632.1993.tb23022. x.

  30. Kaur A, Anand C, Singh TG, Dhiman S, Babbar R (2019) Acetylcholinesterase inhibitors: a milestone to treat neurological disorders. Plant Arch 19:1347–1359

    Google Scholar 

  31. Zara S, De Colli M, Rapino M, Pacella S, Nasuti C, Sozio P, Di Stefano A, Cataldi A (2013) Ibuprofen and lipoic acid conjugate neuroprotective activity is mediated by Ngb/Akt intracellular signaling pathway in Alzheimer’s disease rat model. Gerontology 59:250–260. doi: https://doi.org/10.1159/000346445

    Article  CAS  PubMed  Google Scholar 

  32. Ooi L, Patel M, Muench G (2014) The thiol antioxidant lipoic acid and Alzheimer’s disease.Systems Biology of Free Radicals and Antioxidants2275–2288

  33. Nietzel T, Mostertz J, Hochgräfe F, Schwarzländer M (2017) Redox regulation of mitochondrial proteins and proteomes by cysteine thiol switches. Mitochondrion 33:72–83. doi: https://doi.org/10.1016/j.mito.2016.07.010

    Article  CAS  PubMed  Google Scholar 

  34. Zhang YH, Yan XZ, Xu SF, Pang ZQ, Li LB, Yang Y, Fan YG, Wang Z, Yu X, Guo C, Ao Q (2020) α-Lipoic Acid Maintains Brain Glucose Metabolism via BDNF/TrkB/HIF-1α Signaling Pathway in P301S Mice. Front. Aging Neurosci 12:262. doi: https://doi.org/10.3389/fnagi.2020.00262

    Article  CAS  Google Scholar 

  35. Ahmed HH (2012) Modulatory effects of vitamin E, acetyl-l-carnitine and α-lipoic acid on new potential biomarkers for Alzheimer’s disease in rat model. Exp Toxicol Pathol 64:549–556

    Article  CAS  Google Scholar 

  36. Sancheti H, Akopian G, Yin F, Brinton RD, Walsh JP, Cadenas E (2013) Age-dependent modulation of synaptic plasticity and insulin mimetic effect of lipoic acid on a mouse model of Alzheimer’s disease. PLoS ONE 8:e69830. https://doi.org/10.1371/journal.pone.0069830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Khan H, Singh A, Thapa K, Garg N, Grewal AK, Singh TG (2021) Therapeutic modulation of the phosphatidylinositol 3-kinases (PI3K) pathway in cerebral ischemic injury. Brain Res 1761:147399. DOI: https://doi.org/10.1016/j.brainres.2021.147399

    Article  CAS  Google Scholar 

  38. Ajith TA, Nima N, Veena RK, Janardhanan KK, Antonawich F (2014) Effect of palladium α-lipoic acid complex on energy in the brain mitochondria of aged rats. Altern Ther Health Med 20:27–35

    PubMed  Google Scholar 

  39. Khan H, Grewal AK, Singh TG (2022) Pharmacological postconditioning by protocatechuic acid attenuates brain injury in ischemia-reperfusion (I/R) mice model: Implications of nuclear factor erythroid-2-related factor pathway. https://doi.org/10.1016/j.neuroscience.2022.03.016. Neuroscience

  40. Abdel-Daim MM, El-Tawil OS, Bungau SG, Atanasov AG (2019) Applications of antioxidants in metabolic disorders and degenerative diseases: Mechanistic approach. Oxid. Med. Cell. Longev, 2019. https://doi.org/10.1155/2019/4179676

  41. Khan H, Kashyap A, Kaur A, Singh TG (2020) Pharmacological postconditioning: a molecular aspect in ischemic injury. J Pharm Pharmacol 72:1513–1527. https://doi.org/10.1111/jphp.13336

    Article  CAS  PubMed  Google Scholar 

  42. Lv C, Maharjan S, Wang Q, Sun Y, Han X, Wang S, Mao Z, Xin Y, Zhang B (2017) α-Lipoic acid promotes neurological recovery after ischemic stroke by activating the Nrf2/HO-1 pathway to attenuate oxidative damage. Cell Physiol Biochem 43:1273–1287. doi: https://doi.org/10.1159/000481840

    Article  CAS  PubMed  Google Scholar 

  43. Zhang J, Xiao F, Zhang L, Wang X, Lai X, Shen Y, Zhang M, Zhou B, Lang H, Yu P, Hua F (2018) Alpha-lipoic acid preconditioning and ischaemic postconditioning synergistically protect rats from cerebral injury induced by ischemia and reperfusion partly via inhibition TLR4/MyD88/NF-κB signaling pathway. Cell Physiol Biochem 51:1448–1460. https://doi.org/10.1159/000495593

    Article  CAS  PubMed  Google Scholar 

  44. Grewal AK, Singh TG, Singh N (2020) Potential herbal drugs for ischemic stroke: a review. Plant Arch 20:3772–3783

    Google Scholar 

  45. Biewenga GP, Haenen GR, Bast A (1997) The pharmacology of the antioxidant lipoic acid. Gen Pharmacol-Vasc S 29:315–331. doi: https://doi.org/10.1016/s0306-3623(96)00474-0

    Article  CAS  Google Scholar 

  46. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208. doi: https://doi.org/10.2174/0929867053764635

    Article  CAS  PubMed  Google Scholar 

  47. Dong Y, Wang H, Chen Z (2015) Alpha-lipoic acid attenuates cerebral ischemia and reperfusion injury via insulin receptor and PI3K/Akt-dependent inhibition of NADPH oxidase. Int J Endocrinol. doi: https://doi.org/10.1155/2015/903186

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sharma VK, Singh TG, Garg N, Dhiman S, Gupta S, Rahman M, Najda A, Walasek-Janusz M, Kamel M, Albadrani GM, Akhtar MF (2021) Dysbiosis and Alzheimer’s Disease: A Role for Chronic Stress?. Biomolecules 11:678. https://doi.org/10.3390/biom11050678

  49. Guo S, Bragina O, Xu Y, Cao Z, Chen H, Zhou B, Morgan M, Lin Y, Jiang BH, Liu KJ, Shi H (2008) Glucose up-regulates HIF‐1α expression in primary cortical neurons in response to hypoxia through maintaining cellular redox status. J Neurochem 105:1849–1860. doi: https://doi.org/10.1111/j.1471-4159.2008.05287.x

    Article  CAS  PubMed  Google Scholar 

  50. Zhang L, qaing Xing G, Barker JL, Chang Y, Maric D, Ma W, Li BS, Rubinow DR (2001) α-Lipoic acid protects rat cortical neurons against cell death induced by amyloid and hydrogen peroxide through the Akt signalling pathway. Neurosci Lett 312:125–128. doi: https://doi.org/10.1016/s0304-3940(01)02205-4

    Article  CAS  PubMed  Google Scholar 

  51. Ma R, Wang X, Peng P, Xiong J, Dong H, Wang L, Ding Z (2016) α-Lipoic acid inhibits sevoflurane‐induced neuronal apoptosis through PI3K/Akt signalling pathway. Cell Biochem Funct 34:42–47. doi: https://doi.org/10.1002/cbf.3163

    Article  CAS  PubMed  Google Scholar 

  52. Choi KH, Park MS, Kim HS, Kim KT, Kim HS, Kim JT, Kim BC, Kim MK, Park JT, Cho KH (2015) Alpha-lipoic acid treatment is neurorestorative and promotes functional recovery after stroke in rats. Mol brain 8:1–16. doi: https://doi.org/10.1186/s13041-015-0101-6

    Article  CAS  Google Scholar 

  53. Panigrahi M, Sadguna Y, Shivakumar BR, Kolluri SV, Roy S, Packer L, Ravindranath V (1996) α-Lipoic acid protects against reperfusion injury following cerebral ischemia in rats. Brain Res 717:184–188. doi: https://doi.org/10.1016/0006-8993(96)00009-1

    Article  CAS  PubMed  Google Scholar 

  54. Saklani P, Khan H, Gupta S, Kaur A, Singh TG (2022) Neuropeptides: Potential neuroprotective agents in ischemic injury. Life Sci 288:120186

    Article  CAS  Google Scholar 

  55. Cao X, Phillis JW (1995) The free radical scavenger, α-lipoic acid, protects against cerebral ischemia-reperfusion injury in gerbils. Free Radic Res 23:365–370. doi: https://doi.org/10.3109/10715769509065257

    Article  CAS  PubMed  Google Scholar 

  56. Connell BJ, Saleh M, Khan BV, Saleh TM (2011) Lipoic acid protects against reperfusion injury in the early stages of cerebral ischemia. Brain Res 1375:128–136. doi: https://doi.org/10.1016/j.brainres.2010.12.045

    Article  CAS  PubMed  Google Scholar 

  57. Dos Santos SM, Romeiro CF, Rodrigues CA, Cerqueira AR, Monteiro MC (2019) Mitochondrial dysfunction and alpha-lipoic acid: Beneficial or harmful in Alzheimer’s disease? Oxid Med Cell Longev. doi: https://doi.org/10.1155/2019/8409329

    Article  PubMed  PubMed Central  Google Scholar 

  58. Coles A, Alastair Compston A Coles (2008) Lancet 372:1502–1517. https://doi.org/10.1016/S0140-6736(08)61620-7

    Article  CAS  PubMed  Google Scholar 

  59. Friese MA, Schattling B, Fugger L (2014) Mechanisms of neurodegeneration and axonal dysfunction in multiple sclerosis. Nat Rev Neurol 10:225. doi: https://doi.org/10.1038/nrneurol.2014.37

    Article  CAS  PubMed  Google Scholar 

  60. Lassmann H (2013) Pathology and disease mechanisms in different stages of multiple sclerosis. J Neurol Sci 333:1–4. doi: https://doi.org/10.1016/j.jns.2013.05.010

    Article  CAS  PubMed  Google Scholar 

  61. Errea O, Moreno B, Gonzalez-Franquesa A, Garcia-Roves PM, Villoslada P (2015) The disruption of mitochondrial axonal transport is an early event in neuroinflammation. J Neuroinflammation 12:1–15

    Article  Google Scholar 

  62. Bros H, Millward JM, Paul F, Niesner R, Infante-Duarte C (2014) Oxidative damage to mitochondria at the nodes of Ranvier precedes axon degeneration in ex vivo transected axons. Exp Neurol 261:127–135. DOI: https://doi.org/10.1016/j.expneurol.2014.06.018

    Article  CAS  PubMed  Google Scholar 

  63. El-Salem K, Al-Mistarehi AH, Khalil H, Al-Sharman A, Yassin A (2021) Serum Tumor Necrosis Factor-Alpha Levels Correlate with Cognitive Function Scales Scores in Multiple Sclerosis Patients. Mult Scler Relat Disord 47:102621. doi: https://doi.org/10.1016/j.msard.2020.102621

    Article  PubMed  Google Scholar 

  64. Haider L, Fischer MT, Frischer JM, Bauer J, Höftberger R, Botond G, Esterbauer H, Binder CJ, Witztum JL, Lassmann H (2011) Oxidative damage in multiple sclerosis lesions. Brain 134:1914–1924. doi: https://doi.org/10.1093/brain/awr128

    Article  PubMed  PubMed Central  Google Scholar 

  65. González-González L, Pérez-Cortéz JG, Flores-Aldana M, Macías-Morales N, Hernández-Girón C (2015) Antioxidant use as dietary therapy in patients with multiple sclerosis. Medwave 15:e6065–e6065. doi: https://doi.org/10.5867/medwave.2015.01.6065

    Article  PubMed  Google Scholar 

  66. Thapa K, Khan H, Sharma U, Grewal AK, Singh TG (2020) Poly (ADP-ribose) polymerase-1 as a promising drug target for neurodegenerative diseases. Life Sci 118975. doi: https://doi.org/10.1016/j.lfs.2020.118975

  67. Comabella M, Khoury SJ (2012) Immunopathogenesis of multiple sclerosis. Clin Immunol 142:2–8. doi: https://doi.org/10.1016/j.clim.2011.03.004

    Article  CAS  PubMed  Google Scholar 

  68. Kallaur AP, Reiche EM, Oliveira SR, Pereira WL, Alfieri DF, Flauzino T, de Meleck Proença C, Lozovoy MA, Kaimen-Maciel DR, Maes M (2017) Genetic, immune-inflammatory, and oxidative stress biomarkers as predictors for disability and disease progression in multiple sclerosis. Mol Neurobiol 54:31–44. doi: https://doi.org/10.1007/s12035-015-9648-6

    Article  CAS  PubMed  Google Scholar 

  69. Tully M, Shi R (2013) New insights in the pathogenesis of multiple sclerosis—role of acrolein in neuronal and myelin damage. Int J Mol Sci 14:20037–20047. doi: https://doi.org/10.3390/ijms141020037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Trapp BD, Ransohoff R, Rudick R (1999) Axonal pathology in multiple sclerosis: relationship to neurologic disability. Curr Opin Neurol 12:295–302. doi: https://doi.org/10.1097/00019052-199906000-00008

    Article  CAS  PubMed  Google Scholar 

  71. Smith KJ, Kapoor R, Felts PA (1999) Demyelination: the role of reactive oxygen and nitrogen species. Brain Pathol 9:69–92. doi: https://doi.org/10.1111/j.1750-3639.1999.tb00212.x

    Article  CAS  PubMed  Google Scholar 

  72. Waslo C, Bourdette D, Gray N, Wright K, Spain R (2019) Lipoic acid and other antioxidants as therapies for multiple sclerosis. Curr Treat Options Neurol 21:26. doi: https://doi.org/10.1007/s11940-019-0566-1

    Article  PubMed  Google Scholar 

  73. Yadav V, Marracci G, Lovera J, Woodward W, Bogardus K, Marquardt W, Shinto L, Morris C, Bourdette D (2005) Lipoic acid in multiple sclerosis: a pilot study. Mult Scler J 11:159–165. doi: https://doi.org/10.1191/1352458505ms1143oa

    Article  CAS  Google Scholar 

  74. Chaudhary P, Marracci G, Yu X, Galipeau D, Morris B, Bourdette D (2011) Lipoic acid decreases inflammation and confers neuroprotection in experimental autoimmune optic neuritis. J Neuroimmunol 233:90–96. doi: https://doi.org/10.1016/j.jneuroim.2010.12.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Minagar A, Alexander JS (2003) Blood-brain barrier disruption in multiple sclerosis. Mult Scler J 9:540–549. doi: https://doi.org/10.1191/1352458503ms965oa

    Article  CAS  Google Scholar 

  76. Schreibelt G, Musters RJ, Reijerkerk A, de Groot LR, van der Pol SM, Hendrikx EM, Döpp ED, Dijkstra CD, Drukarch B, de Vries HE (2006) Lipoic acid affects cellular migration into the central nervous system and stabilizes blood-brain barrier integrity. J Immunol 177:2630–2637. doi: https://doi.org/10.4049/jimmunol.177.4.2630

    Article  CAS  PubMed  Google Scholar 

  77. Goel P, Jindal R, Singh T, Sharma S, Sharma P, Kaur H, Vohra K (2010) Focused Conference Group: Fc09-Inflammation And Immunopharmacology: New Tools For Old Diseases Role Of Ages Inhibitors In Inflammation And Rheumatoid Arthritis: Paper No.: 473. Basic Clin Pharmacol Toxicol 107:131–132

  78. Goyal A, Kumar S, Nagpal M, Singh I, Arora S (2011) Potential of novel drug delivery systems for herbal drugs. Indian J Pharm Educ Res 45:225–235

    Google Scholar 

  79. Singh I, Rehni AK, Kalra R, Joshi G, Kumar M, Aboul-Enein HY (2007) Ion exchange resins: Drug delivery and therapeutic applications. Fabad J Pharm Sci 32:91

    Google Scholar 

  80. Dumont RJ, Verma S, Okonkwo DO, Hurlbert RJ, Boulos PT, Ellegala DB, Dumont AS (2001) Acute spinal cord injury, part I: pathophysiologic mechanisms. Clin Neuropharmacol 24:254–264. doi: https://doi.org/10.1097/00002826-200109000-00002

    Article  CAS  PubMed  Google Scholar 

  81. Bedreag OH, Rogobete AF, Sărăndan M, Cradigati A, Păpurică M, Roşu OM, Dumbuleu CM, Săndesc D (2014) Oxidative stress and antioxidant therapy in traumatic spinal cord injuries. Rom J Anaesth Intensive Care 21:123

    PubMed  PubMed Central  Google Scholar 

  82. Szabo TA, Warters RD, Kadry B, Stroud RE, Matthews RG, DeSantis SM, Spinale FG (2012) The effect of general vs spinal anesthesia on the inflammatory response in orthopedic surgery. cytokines, 6:11

  83. Bains M, Hall ED (2012) Antioxidant therapies in traumatic brain and spinal cord injury. Biochim Biophys Acta Mol Basis Dis 1822:675–684. https://doi.org/10.1016/j.bbadis.2011.10.017

    Article  CAS  Google Scholar 

  84. Hassler SN, Johnson KM, Hulsebosch CE (2014) Reactive oxygen species and lipid peroxidation inhibitors reduce mechanical sensitivity in a chronic neuropathic pain model of spinal cord injury in rats. J Neurochem 131:413–417. doi: https://doi.org/10.1111/jnc.12830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Slemmer JE, Shacka JJ, Sweeney MI, Weber JT (2008) Antioxidants and free radical scavengers for the treatment of stroke, traumatic brain injury and aging. Curr Med Chem 15:404–414. doi: https://doi.org/10.2174/092986708783497337

    Article  CAS  PubMed  Google Scholar 

  86. Liu W, Shi LJ, Li SG (2019) The immunomodulatory effect of alpha-lipoic acid in autoimmune diseases. Biomed Res Int. https://doi.org/10.1155/2019/8086257

    Article  PubMed  PubMed Central  Google Scholar 

  87. Azbill RD, Mu X, Bruce-Keller AJ, Mattson MP, Springer JE (1997) Impaired mitochondrial function, oxidative stress and altered antioxidant enzyme activities following traumatic spinal cord injury. Brain Res 765:283–290. doi: https://doi.org/10.1016/s0006-8993(97)00573-8

    Article  CAS  PubMed  Google Scholar 

  88. Toklu HZ, Hakan T, Celik H, Biber N, Erzik C, Ogunc AV, Akakin D, Cikler E, Cetinel S, Ersahin M, Sener (2010) Neuroprotective effects of alpha-lipoic acid in experimental spinal cord injury in rats. J Spinal Cord Med 33:401–409. doi: https://doi.org/10.1080/10790268.2010.11689719

    Article  PubMed  PubMed Central  Google Scholar 

  89. Taoka Y, Okajima K, Uchiba M, Johno M (2001) Methylprednisolone reduces spinal cord injury in rats without affecting tumor necrosis factor-α production. J Neurotrauma 18:533–543. https://doi.org/10.1089/089771501300227332

    Article  CAS  PubMed  Google Scholar 

  90. Tas N, Bakar B, Kasimcan MO, Gazyagci S, Ayva SK, Kılınc K, Evliyaoglu C (2010) Evaluation of protective effects of the alpha lipoic acid after spinal cord injury: An animal study. Injury 41:1068–1074. doi: https://doi.org/10.1016/j.injury.2010.05.027

    Article  PubMed  Google Scholar 

  91. Bernards CM, Akers T (2006) Effect of postinjury intravenous or intrathecal methylprednisolone on spinal cord excitatory amino-acid release, nitric oxide generation, PGE 2 synthesis, and myeloperoxidase content in a pig model of acute spinal cord injury. Spinal Cord 44:594–604. doi: https://doi.org/10.1038/sj.sc.3101891

    Article  CAS  PubMed  Google Scholar 

  92. Emmez H, Yildirim Z, Kale A, Tönge M, Durdağ E, Börcek A, Uçankuş LN, Doğulu F, Kiliç N, Baykaner MK (2010) Anti-apoptotic and neuroprotective effects of alpha-lipoic acid on spinal cord ischemia–reperfusion injury in rabbits. Acta Neurochir 152:1591–1601. doi: https://doi.org/10.1007/s00701-010-0703-9

    Article  PubMed  Google Scholar 

  93. Kumbasar U, Demirci H, Emmez G, Yıldırım Z, Gönül İI, Emmez H, Kaymaz M (2018) Protection from spinal cord ischemia-reperfusion damage with alpha-lipoic acid preconditioning in an animal model. Turk Gogus Kalp Damar Cerrahisi Derg 26:138. doi: https://doi.org/10.5606/tgkdc.dergisi.2018.14432

    Article  PubMed  PubMed Central  Google Scholar 

  94. Marracci GH, Jones RE, McKeon GP, Bourdette DN (2002) Alpha lipoic acid inhibits T cell migration into the spinal cord and suppresses and treats experimental autoimmune encephalomyelitis. J Neuroimmunol 131:104–114. doi: https://doi.org/10.1016/s0165-5728(02)00269-2

    Article  CAS  PubMed  Google Scholar 

  95. Singh S, Singh TG, Rehni AK, Sharma V, Singh M, Kaur R (2021) Reviving Mitochondrial Bioenergetics: a relevant approach in epilepsy. Mitochondrion

  96. Singh S, Singh TG, Rehni AK (2020) An Insight on Molecular Mechanisms & Novel Therapeutic Approaches in Epileptogenesis. CNS Neurol Disord - Drug Targets. doi: https://doi.org/10.2174/1871527319666200910153827

    Article  PubMed  Google Scholar 

  97. Trivedi P, Jena GB (2013) Role of α-lipoic acid in dextran sulfate sodium-induced ulcerative colitis in mice: studies on inflammation, oxidative stress, DNA damage and fibrosis. Food Chem Toxicol 59:339–355

    Article  CAS  Google Scholar 

  98. Kim YS, Podder B, Song HY (2013) Cytoprotective effect of alpha-lipoic acid on paraquat-exposed human bronchial epithelial cells via activation of nuclear factor erythroid related factor-2 pathway. Biol Pharm Bull 36:802–811

    Article  CAS  Google Scholar 

  99. Carmona-Aparicio L, Pérez-Cruz C, Zavala-Tecuapetla C, Granados-Rojas L, Rivera-Espinosa L, Montesinos-Correa H, Hernández-Damián J, Pedraza-Chaverri J, Sampieri A III, Coballase-Urrutia E, Cárdenas-Rodríguez N (2015) Overview of Nrf2 as therapeutic target in epilepsy. Int J Mol Sci 16:18348–18367. doi: https://doi.org/10.3390/ijms160818348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Liu Z, Yin X, Liu L, Tao H, Zhou H, Ma G, Cui L, Li Y, Zhang S, Yao L, Cai Z (2015) Association of KEAP1 and NFE2L2 polymorphisms with temporal lobe epilepsy and drug resistant epilepsy. Gene 571:231–236. doi: https://doi.org/10.1016/j.gene.2015.06.055

    Article  CAS  PubMed  Google Scholar 

  101. Nezu M, Suzuki N, Yamamoto M (2017) Targeting the KEAP1-NRF2 system to prevent kidney disease progression. Am J Nephrol 45:473–483. doi: https://doi.org/10.1159/000475890

    Article  CAS  PubMed  Google Scholar 

  102. Cheng Y, Luo F, Zhang Q, Sang Y, Chen X, Zhang L, Liu Y, Li X, Li J, Ding H, Mei Y (2018) α-Lipoic acid alleviates pentetrazol-induced neurological deficits and behavioral dysfunction in rats with seizures via an Nrf2 pathway. RSC Adv 8:4084–4092. doi: https://doi.org/10.1039/C7RA11491E

    Article  CAS  Google Scholar 

  103. Poon HF, Farr SA, Thongboonkerd V, Lynn BC, Banks WA, Morley JE, Klein JB, Butterfield DA (2005) Proteomic analysis of specific brain proteins in aged SAMP8 mice treated with alpha-lipoic acid: implications for aging and age-related neurodegenerative disorders. Neurochem Int 46:159–168. doi:https://doi.org/10.1016/j.neuint.2004.07.008

    Article  CAS  PubMed  Google Scholar 

  104. Aluise CD, Robinson RA, Cai J, Pierce WM, Markesbery WR, Butterfield DA (2011) Redox proteomics analysis of brains from subjects with amnestic mild cognitive impairment compared to brains from subjects with preclinical Alzheimer’s disease: insights into memory loss in MCI. J Alzheimer’s Dis 23:257–269. doi: https://doi.org/10.3233/JAD-2010-101083

    Article  CAS  Google Scholar 

  105. Bousette N, Gramolini AO, Kislinger T (2008) Proteomics-based investigations of animal models of disease. Proteom Clin Appl 2:638–653. doi: https://doi.org/10.1002/prca.200780043

    Article  CAS  Google Scholar 

  106. Poon HF, Castegna A, Farr SA, Thongboonkerd V, Lynn BC, Banks WA, Morley JE, Klein JB, Butterfield DA (2004) Quantitative proteomics analysis of specific protein expression and oxidative modification in aged senescence-accelerated-prone 8 mice brain. Neuroscience 126:915–926. doi: https://doi.org/10.1016/j.neuroscience.2004.04.046

    Article  CAS  PubMed  Google Scholar 

  107. Ikegami S, Shumiya S, Kawamura H (1992) Age-related changes in radial-arm maze learning and basal forebrain cholinergic systems in senescence accelerated mice (SAM). Behav Brain Res 51:15–22. doi:https://doi.org/10.1016/S0166-4328(05)80307-9

    Article  CAS  PubMed  Google Scholar 

  108. Ebanks B, Ingram TL, Chakrabarti L (2020) ATP synthase and Alzheimer’s disease: Putting a spin on the mitochondrial hypothesis. Aging 12:16647. doi: https://doi.org/10.18632/aging.103867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Chitkara College of Pharmacy, Chitkara University, Rajpura, Patiala, Punjab, India for providing the necessary facilities to carry out the research work.

Funding

Nil.

Author information

Authors and Affiliations

Authors

Contributions

Credit Author Statement:Conceptualization: Conceived and designed the experiments: Thakur Gurjeet Singh, Heena Khan, Randhir Singh. Analyzed the data: Heena Khan, Thakur Gurjeet Singh Wrote the manuscript: Heena Khan Editing of the Manuscript: Thakur Gurjeet Singh Critically reviewed the article: Randhir Singh, Thakur Gurjeet Singh Supervision: Thakur Gurjeet Singh, Mohamed M. Abdel-Daim.

Corresponding author

Correspondence to Thakur Gurjeet Singh.

Ethics declarations

Ethics approval and consent to participate:

Not applicable.

Compliance with ethical standards

Not applicable.

Consent to participate:

Not applicable.

Conflict of interest

There are no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, H., Singh, T.G., Dahiya, R.S. et al. α-Lipoic Acid, an Organosulfur Biomolecule a Novel Therapeutic Agent for Neurodegenerative Disorders: An Mechanistic Perspective. Neurochem Res 47, 1853–1864 (2022). https://doi.org/10.1007/s11064-022-03598-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03598-w

Keywords

Navigation