Skip to main content

Advertisement

Log in

The Potential Crosstalk Between the Brain and Visceral Adipose Tissue in Alzheimer’s Development

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The bidirectional communication between the brain and peripheral organs have been widely documented, but the impact of visceral adipose tissue (VAT) dysfunction and its relation to structural and functional brain changes have yet to be fully elucidated. This review initially examines the clinical evidence supporting associations between the brain and VAT before visiting the roles of the autonomic nervous system, fat and glucose metabolism, neuroinflammation, and metabolites. Finally, the possible effects and potential mechanisms of the brain-VAT axis on the pathogenesis of Alzheimer’s disease are discussed, providing new insights regarding future prevention and therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. O’Brien PD, Hinder LM, Callaghan BC, Feldman EL (2017) Neurological consequences of obesity. Lancet Neurol 16(6):465–477

    Article  PubMed  PubMed Central  Google Scholar 

  2. Klöting N, Blüher M (2014) Adipocyte dysfunction, inflammation and metabolic syndrome. Rev Endocr Metab Disord 15(4):277–287

    Article  PubMed  CAS  Google Scholar 

  3. Morais LH, Schreiber HL, Mazmanian SK (2021) The gut microbiota–brain axis in behaviour and brain disorders. Nat Rev Microbiol 19(4):241–255

    Article  CAS  PubMed  Google Scholar 

  4. Desai GS, Zheng C, Geetha T, Mathews ST, White BD, Huggins KW, Zizza CA, Broderick TL, Babu JR (2014) The pancreas-brain axis: insight into disrupted mechanisms associating type 2 diabetes and Alzheimer’s disease. J Alzheimers Dis 42(2):347–356

    Article  CAS  PubMed  Google Scholar 

  5. Bordet R, Deplanque D (2020) Brain-liver axis: a new pathway for cognitive disorders related to hepatic fibrosis. Eur J Neurol 27(11):2111–2112

    Article  CAS  PubMed  Google Scholar 

  6. Wang PY, Caspi L, Lam CK, Chari M, Li X, Light PE, Gutierrez-Juarez R, Ang M, Schwartz GJ, Lam TK (2008) Upper intestinal lipids trigger a gut-brain-liver axis to regulate glucose production. Nature 452(7190):1012–1016

    Article  CAS  PubMed  Google Scholar 

  7. Zhang B, Zhong J, Gao Z (2021) A brain-spleen axis regulates humoral immunity. Neurosci Bull 37(3):427–429

    Article  PubMed  Google Scholar 

  8. Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH, Doria A et al (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360(15):1509–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wajchenberg BL (2000) Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr Rev 21(6):697–738

    Article  CAS  PubMed  Google Scholar 

  10. Lemonnier D (1972) Effect of age, sex, and sites on the cellularity of the adipose tissue in mice and rats rendered obese by a high-fat diet. J Clin Invest 51(11):2907–2915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Slavin BG, Ballard KW (1978) Morphological studies on the adrenergic innervation of white adipose tissue. Anat Rec 191(3):377–389

    Article  CAS  PubMed  Google Scholar 

  12. Anjum I, Fayyaz M, Wajid A, Sohail W, Ali A (2018) Does obesity increase the risk of dementia: a literature review. Cureus 10(5):e2660–e2660

    PubMed  PubMed Central  Google Scholar 

  13. Kullmann S, Valenta V, Wagner R, Tschritter O, Machann J, Häring H-U, Preissl H, Fritsche A, Heni M (2020) Brain insulin sensitivity is linked to adiposity and body fat distribution. Nat Commun 11(1):1841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sastry PS (1985) Lipids of nervous tissue: composition and metabolism. Prog Lipid Res 24(2):69–176

    Article  CAS  PubMed  Google Scholar 

  15. Zsido RG, Heinrich M, Slavich GM, Beyer F, Kharabian Masouleh S, Kratzsch J, Raschpichler M, Mueller K, Scharrer U, Löffler M et al (2019) Association of estradiol and visceral fat with structural brain networks and memory performance in adults. JAMA Netw Open 2(6):e196126

    Article  PubMed  PubMed Central  Google Scholar 

  16. Holland J, Sorrell J, Yates E, Smith K, Arbabi S, Arnold M, Rivir M, Morano R, Chen J, Zhang X et al (2019) A brain-melanocortin-vagus axis mediates adipose tissue expansion independently of energy intake. Cell Rep 27(8):2399-2410.e2396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kao Y-C, Ho P-C, Tu Y-K, Jou IM, Tsai K-J (2020) Lipids and Alzheimer’s disease. Int J Mol Sci 21(4):1505

    Article  CAS  PubMed Central  Google Scholar 

  18. Farooqui AA, Liss L, Horrocks LA (1988) Neurochemical aspects of Alzheimer’s disease: involvement of membrane phospholipids. Metab Brain Dis 3(1):19–35

    Article  CAS  PubMed  Google Scholar 

  19. Praticò D, Lee VMY, Trojanowski JQ, Rokach J, Fitzgerald GA (1998) Increased F2-isoprostanes in Alzheimer’s disease: evidence for enhanced lipid peroxidation in vivo. FASEB J 12(15):1777–1783

    Article  PubMed  Google Scholar 

  20. de Leon MJ, Mosconi L, Li J, De Santi S, Yao Y, Tsui WH, Pirraglia E, Rich K, Javier E, Brys M et al (2007) Longitudinal CSF isoprostane and MRI atrophy in the progression to AD. J Neurol 254(12):1666–1675

    Article  PubMed  CAS  Google Scholar 

  21. Liang X, Wang Q, Hand T, Wu L, Breyer RM, Montine TJ, Andreasson K (2005) Deletion of the prostaglandin E2 EP2 receptor reduces oxidative damage and amyloid burden in a model of Alzheimer’s disease. J Neurosci 25(44):10180–10187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Praticò D, Uryu K, Sung S, Tang S, Trojanowski JQ, Lee VM (2002) Aluminum modulates brain amyloidosis through oxidative stress in APP transgenic mice. FASEB J 16(9):1138–1140

    Article  PubMed  CAS  Google Scholar 

  23. Montine TJ, Quinn JF, Milatovic D, Silbert LC, Dang T, Sanchez S, Terry E, Roberts LJ 2nd, Kaye JA, Morrow JD (2002) Peripheral F2-isoprostanes and F4-neuroprostanes are not increased in Alzheimer’s disease. Ann Neurol 52(2):175–179

    Article  CAS  PubMed  Google Scholar 

  24. Sultana R, Perluigi M, Butterfield DA (2013) Lipid peroxidation triggers neurodegeneration: a redox proteomics view into the Alzheimer disease brain. Free Radic Biol Med 62:157–169

    Article  CAS  PubMed  Google Scholar 

  25. Martín V, Fabelo N, Santpere G, Puig B, Marín R, Ferrer I, Díaz M (2010) Lipid alterations in lipid rafts from Alzheimer’s disease human brain cortex. J Alzheimers Dis 19(2):489–502

    Article  PubMed  CAS  Google Scholar 

  26. Markesbery WR, Kryscio RJ, Lovell MA, Morrow JD (2005) Lipid peroxidation is an early event in the brain in amnestic mild cognitive impairment. Ann Neurol 58(5):730–735

    Article  CAS  PubMed  Google Scholar 

  27. Wassink AM, van der Graaf Y, van Haeften TW, Spiering W, Soedamah-Muthu SS, Visseren FL (2011) Waist circumference and metabolic risk factors have separate and additive effects on the risk of future type 2 diabetes in patients with vascular diseases. A cohort study. Diabet Med 28(8):932–940

    Article  CAS  PubMed  Google Scholar 

  28. Rafati S, Isheh M, Azarbad A, Ghadiri Soufi F, Rahimi A, Kheirandish M (2021) The association of sleep duration and metabolic syndrome in the Bandare-Kong cohort study, a cross-sectional survey (finding from PERSIAN cohort study). Diabetol Metab Syndr 13(1):114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mathew H, Farr OM, Mantzoros CS (2016) Metabolic health and weight: understanding metabolically unhealthy normal weight or metabolically healthy obese patients. Metabolism 65(1):73–80

    Article  CAS  PubMed  Google Scholar 

  30. García-Hermoso A, Martinez-Gomez D, Del Rosario F-S, Ortega FB, Castro-Piñero J, Hillman CH, Veiga OL, Esteban-Cornejo I (2021) Longitudinal associations of physical fitness and body mass index with academic performance. Scand J Med Sci Sports 31(1):184–192

    Article  PubMed  Google Scholar 

  31. Logan NE, Raine LB, Drollette ES, Castelli DM, Khan NA, Kramer AF, Hillman CH (2021) The differential relationship of an afterschool physical activity intervention on brain function and cognition in children with obesity and their normal weight peers. Pediatr Obes 16(2):e12708

    Article  PubMed  Google Scholar 

  32. Schwartz DH, Dickie E, Pangelinan MM, Leonard G, Perron M, Pike GB, Richer L, Veillette S, Pausova Z, Paus T (2014) Adiposity is associated with structural properties of the adolescent brain. Neuroimage 103:192–201

    Article  PubMed  Google Scholar 

  33. Veit R, Kullmann S, Heni M, Machann J, Häring HU, Fritsche A, Preissl H (2014) Reduced cortical thickness associated with visceral fat and BMI. NeuroImage Clin 6:307–311

    Article  PubMed  PubMed Central  Google Scholar 

  34. Saute RL, Soder RB, Alves Filho JO, Baldisserotto M, Franco AR (2018) Increased brain cortical thickness associated with visceral fat in adolescents. Pediatr Obes 13(1):74–77

    Article  CAS  PubMed  Google Scholar 

  35. Sliz E, Shin J, Syme C, Patel Y, Parker N, Richer L, Gaudet D, Bennett S, Paus T, Pausova Z (2021) A variant near DHCR24 associates with microstructural properties of white matter and peripheral lipid metabolism in adolescents. Mol Psychiatry 26(8):3795–3805

    Article  PubMed  Google Scholar 

  36. Syme C, Pelletier S, Shin J, Abrahamowicz M, Leonard G, Perron M, Richer L, Veillette S, Gaudet D, Pike B et al (2019) Visceral fat-related systemic inflammation and the adolescent brain: a mediating role of circulating glycerophosphocholines. Int J Obes 43(6):1223–1230

    Article  CAS  Google Scholar 

  37. Contreras-Rodríguez O, Cano M, Vilar-López R, Rio-Valle JS, Verdejo-Román J, Navas JF, Martín-Pérez C, Fernández-Aranda F, Menchón JM, Soriano-Mas C et al (2019) Visceral adiposity and insular networks: associations with food craving. Int J Obes 43(3):503–511

    Article  Google Scholar 

  38. Cárdenas D, Madinabeitia I, Vera J, de Teresa C, Alarcón F, Jiménez R, Catena A (2020) Better brain connectivity is associated with higher total fat mass and lower visceral adipose tissue in military pilots. Sci Rep 10(1):610

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Debette S, Beiser A, Hoffmann U, Decarli C, O’Donnell CJ, Massaro JM, Au R, Himali JJ, Wolf PA, Fox CS et al (2010) Visceral fat is associated with lower brain volume in healthy middle-aged adults. Ann Neurol 68(2):136–144

    PubMed  PubMed Central  Google Scholar 

  40. Cho J, Seo S, Kim WR, Kim C, Noh Y (2021) Association between visceral fat and brain cortical thickness in the elderly: a neuroimaging study. Front Aging Neurosci 13:694629

    Article  PubMed  PubMed Central  Google Scholar 

  41. Widya RL, Kroft LJ, Altmann-Schneider I, van den Berg-Huysmans AA, van der Bijl N, de Roos A, Lamb HJ, van Buchem MA, Slagboom PE, van Heemst D et al (2015) Visceral adipose tissue is associated with microstructural brain tissue damage. Obesity (Silver Spring, Md) 23(5):1092–1096

    Article  Google Scholar 

  42. Bloedel JR, Bracha V (1997) Duality of cerebellar motor and cognitive functions. Int Rev Neurobiol 41:613–634

    Article  CAS  PubMed  Google Scholar 

  43. Gautier JF, Chen K, Salbe AD, Bandy D, Pratley RE, Heiman M, Ravussin E, Reiman EM, Tataranni PA (2000) Differential brain responses to satiation in obese and lean men. Diabetes 49(5):838–846

    Article  CAS  PubMed  Google Scholar 

  44. Wang GJ, Yang J, Volkow ND, Telang F, Ma Y, Zhu W, Wong CT, Tomasi D, Thanos PK, Fowler JS (2006) Gastric stimulation in obese subjects activates the hippocampus and other regions involved in brain reward circuitry. Proc Natl Acad Sci USA 103(42):15641–15645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jacobs HIL, Hopkins DA, Mayrhofer HC, Bruner E, van Leeuwen FW, Raaijmakers W, Schmahmann JD (2017) The cerebellum in Alzheimer’s disease: evaluating its role in cognitive decline. Brain 141(1):37–47

    Article  Google Scholar 

  46. Raschpichler M, Straatman K, Schroeter ML, Arelin K, Schlögl H, Fritzsch D, Mende M, Pampel A, Böttcher Y, Stumvoll M et al (2013) Abdominal fat distribution and its relationship to brain changes: the differential effects of age on cerebellar structure and function: a cross-sectional, exploratory study. BMJ Open 3(1):e001915

    Article  PubMed  PubMed Central  Google Scholar 

  47. Raz N, Rodrigue KM (2006) Differential aging of the brain: patterns, cognitive correlates and modifiers. Neurosci Biobehav Rev 30(6):730–748

    Article  PubMed  PubMed Central  Google Scholar 

  48. Walhovd KB, Fjell AM, Reinvang I, Lundervold A, Dale AM, Eilertsen DE, Quinn BT, Salat D, Makris N, Fischl B (2005) Effects of age on volumes of cortex, white matter and subcortical structures. Neurobiol Aging 26(9):1261–1270 (discussion 1275–1268)

    Article  PubMed  Google Scholar 

  49. Lake JE, Popov M, Post WS, Palella FJ, Sacktor N, Miller EN, Brown TT, Becker JT (2017) Visceral fat is associated with brain structure independent of human immunodeficiency virus infection status. J Neurovirol 23(3):385–393

    Article  CAS  PubMed  Google Scholar 

  50. Morys F, Dadar M, Dagher A (2021) Association between midlife obesity and its metabolic consequences, cerebrovascular disease, and cognitive decline. J Clin Endocrinol Metab 106(10):e4260–e4274

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lee H, Seo HS, Kim REY, Lee SK, Lee YH, Shin C (2021) Obesity and muscle may have synergic effect more than independent effects on brain volume in community-based elderly. Eur Radiol 31(5):2956–2966

    Article  PubMed  Google Scholar 

  52. Beller E, Lorbeer R, Keeser D, Schoeppe F, Sellner S, Hetterich H, Bamberg F, Schlett CL, Peters A, Ertl-Wagner B et al (2019) Hepatic fat is superior to BMI, visceral and pancreatic fat as a potential risk biomarker for neurodegenerative disease. Eur Radiol 29(12):6662–6670

    Article  PubMed  Google Scholar 

  53. Anan F, Masaki T, Eto T, Iwao T, Shimomura T, Umeno Y, Eshima N, Saikawa T, Yoshimatsu H (2009) Visceral fat accumulation is a significant risk factor for white matter lesions in Japanese type 2 diabetic patients. Eur J Clin Invest 39(5):368–374

    Article  CAS  PubMed  Google Scholar 

  54. Yamashiro K, Tanaka R, Tanaka Y, Miyamoto N, Shimada Y, Ueno Y, Urabe T, Hattori N (2014) Visceral fat accumulation is associated with cerebral small vessel disease. Eur J Neurol 21(4):667–673

    Article  CAS  PubMed  Google Scholar 

  55. Lampe L, Zhang R, Beyer F, Huhn S, Kharabian Masouleh S, Preusser S, Bazin PL, Schroeter ML, Villringer A, Witte AV (2019) Visceral obesity relates to deep white matter hyperintensities via inflammation. Ann Neurol 85(2):194–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kim KW, Seo H, Kwak MS, Kim D (2017) Visceral obesity is associated with white matter hyperintensity and lacunar infarct. Int J Obes 41(5):683–688

    Article  CAS  Google Scholar 

  57. Kwon HM, Park JH, Park JH, Jeong HY, Lim JS, Jeong HG, Shin DW, Yun JM, Lee H (2016) Visceral fat is an independent predictor of cerebral microbleeds in neurologically healthy people. Cerebrovasc Dis (Basel, Switzerland) 42(1–2):90–96

    Article  Google Scholar 

  58. Higuchi S, Kabeya Y, Kato K (2017) Visceral-to-subcutaneous fat ratio is independently related to small and large cerebrovascular lesions even in healthy subjects. Atherosclerosis 259:41–45

    Article  CAS  PubMed  Google Scholar 

  59. Toriya M, Maekawa F, Maejima Y, Onaka T, Fujiwara K, Nakagawa T, Nakata M, Yada T (2010) Long-term infusion of brain-derived neurotrophic factor reduces food intake and body weight via a corticotrophin-releasing hormone pathway in the paraventricular nucleus of the hypothalamus. J Neuroendocrinol 22(9):987–995

    Article  CAS  PubMed  Google Scholar 

  60. Yoo S, Cha D, Kim S, Jiang L, Cooke P, Adebesin M, Wolfe A, Riddle R, Aja S, Blackshaw S (2020) Tanycyte ablation in the arcuate nucleus and median eminence increases obesity susceptibility by increasing body fat content in male mice. Glia 68(10):1987–2000

    Article  PubMed  PubMed Central  Google Scholar 

  61. Cardoso F, Klein Wolterink RGJ, Godinho-Silva C, Domingues RG, Ribeiro H, da Silva JA, Mahú I, Domingos AI, Veiga-Fernandes H (2021) Neuro-mesenchymal units control ILC2 and obesity via a brain-adipose circuit. Nature 597(7876):410–414

    Article  CAS  PubMed  Google Scholar 

  62. Warne JP, Foster MT, Horneman HF, Pecoraro NC, Ginsberg AB, Akana SF, Dallman MF (2007) Afferent signalling through the common hepatic branch of the vagus inhibits voluntary lard intake and modifies plasma metabolite levels in rats. J Physiol 583(Pt 2):455–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Park S, Kim DS, Kwon DY, Yang HJ (2011) Long-term central infusion of adiponectin improves energy and glucose homeostasis by decreasing fat storage and suppressing hepatic gluconeogenesis without changing food intake. J Neuroendocrinol 23(8):687–698

    Article  CAS  PubMed  Google Scholar 

  64. Sa-Nguanmoo P, Tanajak P, Kerdphoo S, Jaiwongkam T, Wang X, Liang G, Li X, Jiang C, Pratchayasakul W, Chattipakorn N et al (2018) FGF21 and DPP-4 inhibitor equally prevents cognitive decline in obese rats. Biomed Pharmacother 97:1663–1672

    Article  CAS  PubMed  Google Scholar 

  65. Ward MA, Carlsson CM, Trivedi MA, Sager MA, Johnson SC (2005) The effect of body mass index on global brain volume in middle-aged adults: a cross sectional study. BMC Neurol 5:23

    Article  PubMed  PubMed Central  Google Scholar 

  66. Taki Y, Kinomura S, Sato K, Inoue K, Goto R, Okada K, Uchida S, Kawashima R, Fukuda H (2008) Relationship between body mass index and gray matter volume in 1,428 healthy individuals. Obesity (Silver Spring, Md) 16(1):119–124

    Article  Google Scholar 

  67. Gustafson DR, Steen B, Skoog I (2004) Body mass index and white matter lesions in elderly women. An 18-year longitudinal study. Int Psychogeriatr 16(3):327–336

    Article  CAS  PubMed  Google Scholar 

  68. Kang EB, Koo JH, Jang YC, Yang CH, Lee Y, Cosio-Lima LM, Cho JY (2016) Neuroprotective effects of endurance exercise against high-fat diet-induced hippocampal neuroinflammation. J Neuroendocrinol. https://doi.org/10.1111/jne.12385

    Article  PubMed  Google Scholar 

  69. de Mello AH, Schraiber RB, Goldim MPS, Garcez ML, Gomes ML, de Bem SG, Zaccaron RP, Schuck PF, Budni J, Silveira PCL et al (2019) Omega-3 fatty acids attenuate brain alterations in high-fat diet-induced obesity model. Mol Neurobiol 56(1):513–524

    Article  PubMed  CAS  Google Scholar 

  70. Chen KE, Lainez NM, Nair MG, Coss D (2021) Visceral adipose tissue imparts peripheral macrophage influx into the hypothalamus. J Neuroinflamm 18(1):140

    Article  CAS  Google Scholar 

  71. Shin JA, Jeong SI, Kim M, Yoon JC, Kim HS, Park EM (2015) Visceral adipose tissue inflammation is associated with age-related brain changes and ischemic brain damage in aged mice. Brain Behav Immun 50:221–231

    Article  PubMed  Google Scholar 

  72. Jansen IE, Savage JE, Watanabe K, Bryois J, Williams DM, Steinberg S, Sealock J, Karlsson IK, Hägg S, Athanasiu L et al (2019) Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat Genet 51(3):404–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kunkle BW, Grenier-Boley B, Sims R, Bis JC, Damotte V, Naj AC, Boland A, Vronskaya M, van der Lee SJ, Amlie-Wolf A et al (2019) Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat Genet 51(3):414–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chiba I, Lee S, Bae S, Makino K, Shinkai Y, Shimada H (2020) Visceral fat accumulation is associated with mild cognitive impairment in community-dwelling older Japanese women. J Nutr Health Aging 24(3):352–357

    Article  CAS  PubMed  Google Scholar 

  75. Isaac V, Sim S, Zheng H, Zagorodnov V, Tai ES, Chee M (2011) Adverse associations between visceral adiposity, brain structure, and cognitive performance in healthy elderly. Front Aging Neurosci 3:12

    Article  PubMed  PubMed Central  Google Scholar 

  76. Nyberg CK, Fjell AM, Walhovd KB (2020) Level of body fat relates to memory decline and interacts with age in its association with hippocampal and subcortical atrophy. Neurobiol Aging 91:112–124

    Article  PubMed  Google Scholar 

  77. Jin WS, Shen LL, Bu XL, Zhang WW, Chen SH, Huang ZL, Xiong JX, Gao CY, Dong Z, He YN et al (2017) Peritoneal dialysis reduces amyloid-beta plasma levels in humans and attenuates Alzheimer-associated phenotypes in an APP/PS1 mouse model. Acta Neuropathol 134(2):207–220

    Article  CAS  PubMed  Google Scholar 

  78. Cipolletta D, Cohen P, Spiegelman BM, Benoist C, Mathis D (2015) Appearance and disappearance of the mRNA signature characteristic of Treg cells in visceral adipose tissue: age, diet, and PPARγ effects. Proc Natl Acad Sci USA 112(2):482–487

    Article  CAS  PubMed  Google Scholar 

  79. Feuerer M, Herrero L, Cipolletta D, Naaz A, Wong J, Nayer A, Lee J, Goldfine AB, Benoist C, Shoelson S et al (2009) Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med 15(8):930–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Halks-Miller M, Schroeder ML, Haroutunian V, Moenning U, Rossi M, Achim C, Purohit D, Mahmoudi M, Horuk R (2003) CCR1 is an early and specific marker of Alzheimer’s disease. Ann Neurol 54(5):638–646

    Article  CAS  PubMed  Google Scholar 

  81. Lumeng CN, Liu J, Geletka L, Delaney C, Delproposto J, Desai A, Oatmen K, Martinez-Santibanez G, Julius A, Garg S et al (2011) Aging is associated with an increase in T cells and inflammatory macrophages in visceral adipose tissue. J Immunol (Baltimore, Md: 1950) 187(12):6208–6216

    Article  CAS  Google Scholar 

  82. Yudanin NA, Schmitz F, Flamar AL, Thome JJC, Tait Wojno E, Moeller JB, Schirmer M, Latorre IJ, Xavier RJ, Farber DL et al (2019) Spatial and temporal mapping of human innate lymphoid cells reveals elements of tissue specificity. Immunity 50(2):505-519.e504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bapat SP, Myoung Suh J, Fang S, Liu S, Zhang Y, Cheng A, Zhou C, Liang Y, LeBlanc M, Liddle C et al (2015) Depletion of fat-resident Treg cells prevents age-associated insulin resistance. Nature 528(7580):137–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Carter S, Miard S, Caron A, Sallé-Lefort S, St-Pierre P, Anhê FF, Lavoie-Charland E, Blais-Lecours P, Drolet MC, Lefebvre JS et al (2018) Loss of OcaB prevents age-induced fat accretion and insulin resistance by altering B-lymphocyte transition and promoting energy expenditure. Diabetes 67(7):1285–1296

    Article  CAS  PubMed  Google Scholar 

  85. Bodogai M, O’Connell J, Kim K, Kim Y, Moritoh K, Chen C, Gusev F, Vaughan K, Shulzhenko N, Mattison JA et al (2018) Commensal bacteria contribute to insulin resistance in aging by activating innate B1a cells. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aat4271

    Article  PubMed  PubMed Central  Google Scholar 

  86. Rubtsova K, Rubtsov AV, Cancro MP, Marrack P (2015) Age-associated B cells: a T-bet-dependent effector with roles in protective and pathogenic immunity. J Immunol (Baltimore, Md: 1950) 195(5):1933–1937

    Article  CAS  Google Scholar 

  87. Camell CD, Günther P, Lee A, Goldberg EL, Spadaro O, Youm YH, Bartke A, Hubbard GB, Ikeno Y, Ruddle NH et al (2019) Aging induces an Nlrp3 inflammasome-dependent expansion of adipose B cells that impairs metabolic homeostasis. Cell Metab 30(6):1024-1039.e1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ahnstedt H, Roy-O’Reilly M, Spychala MS, Mobley AS, Bravo-Alegria J, Chauhan A, Aronowski J, Marrelli SP, McCullough LD (2018) Sex differences in adipose tissue CD8(+) T cells and regulatory T cells in middle-aged mice. Front Immunol 9:659

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Sallam HS, Tumurbaatar B, Zhang WR, Tuvdendorj D, Chandalia M, Tempia F, Laezza F, Taglialatela G, Abate N (2015) Peripheral adipose tissue insulin resistance alters lipid composition and function of hippocampal synapses. J Neurochem 133(1):125–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Meza-Perez S, Randall TD (2017) Immunological functions of the omentum. Trends Immunol 38(7):526–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lynch L, Nowak M, Varghese B, Clark J, Hogan AE, Toxavidis V, Balk SP, O’Shea D, O’Farrelly C, Exley MA (2012) Adipose tissue invariant NKT cells protect against diet-induced obesity and metabolic disorder through regulatory cytokine production. Immunity 37(3):574–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sag D, Krause P, Hedrick CC, Kronenberg M, Wingender G (2014) IL-10-producing NKT10 cells are a distinct regulatory invariant NKT cell subset. J Clin Invest 124(9):3725–3740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kellar D, Craft S (2020) Brain insulin resistance in Alzheimer’s disease and related disorders: mechanisms and therapeutic approaches. Lancet Neurol 19(9):758–766

    Article  CAS  PubMed  Google Scholar 

  94. Okabe Y, Medzhitov R (2014) Tissue-specific signals control reversible program of localization and functional polarization of macrophages. Cell 157(4):832–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kawahara K, Suenobu M, Ohtsuka H, Kuniyasu A, Sugimoto Y, Nakagomi M, Fukasawa H, Shudo K, Nakayama H (2014) Cooperative therapeutic action of retinoic acid receptor and retinoid x receptor agonists in a mouse model of Alzheimer’s disease. J Alzheimers Dis 42(2):587–605

    Article  CAS  PubMed  Google Scholar 

  96. Dujovny M, Ding YH, Ding Y, Agner C, Perez-Arjona E (2004) Current concepts on the expression of neurotrophins in the greater omentum. Neurol Res 26(2):226–229

    Article  CAS  PubMed  Google Scholar 

  97. Kim KW, Williams JW, Wang YT, Ivanov S, Gilfillan S, Colonna M, Virgin HW, Gautier EL, Randolph GJ (2016) MHC II+ resident peritoneal and pleural macrophages rely on IRF4 for development from circulating monocytes. J Exp Med 213(10):1951–1959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Perpetuini D, Cardone D, Bucco R, Zito M, Merla A (2018) Assessment of the autonomic response in Alzheimer’s patients during the execution of memory tasks: a functional thermal imaging study. Curr Alzheimer Res 15(10):951–958

    Article  CAS  PubMed  Google Scholar 

  99. Li B, He Y, Ma J, Huang P, Du J, Cao L, Wang Y, Xiao Q, Tang H, Chen S (2019) Mild cognitive impairment has similar alterations as Alzheimer’s disease in gut microbiota. Alzheimers Dement 15(10):1357–1366

    Article  PubMed  Google Scholar 

  100. Guo DH, Yamamoto M, Hernandez CM, Khodadadi H, Baban B, Stranahan AM (2020) Visceral adipose NLRP3 impairs cognition in obesity via IL-1R1 on CX3CR1+ cells. J Clin Invest 130(4):1961–1976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gillette-Guyonnet S, Secher M, Vellas B (2013) Nutrition and neurodegeneration: epidemiological evidence and challenges for future research. Br J Clin Pharmacol 75(3):738–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Gustafson DR, Luchsinger JA (2013) High adiposity: risk factor for dementia and Alzheimer’s disease? Alzheimers Res Ther 5(6):57

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Ibrahim MM (2010) Subcutaneous and visceral adipose tissue: structural and functional differences. Obes Rev 11(1):11–18

    Article  PubMed  Google Scholar 

  104. Luchsinger JA, Gustafson DR (2009) Adiposity and Alzheimer’s disease. Curr Opin Clin Nutr Metab Care 12(1):15–21

    Article  PubMed  PubMed Central  Google Scholar 

  105. Beydoun MA, Lhotsky A, Wang Y, Dal Forno G, An Y, Metter EJ, Ferrucci L, O’Brien R, Zonderman AB (2008) Association of adiposity status and changes in early to mid-adulthood with incidence of Alzheimer’s disease. Am J Epidemiol 168(10):1179–1189

    Article  PubMed  PubMed Central  Google Scholar 

  106. Razay G, Vreugdenhil A, Wilcock G (2006) Obesity, abdominal obesity and Alzheimer disease. Dement Geriatr Cogn Disord 22(2):173–176

    Article  PubMed  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

TTN: Conceptualization, Data curation, Methodology, Writing—Original draft preparation, Visualization. JH: Conceptualization, Data curation, Methodology and Revision. TKV: Conceptualization, Methodology, Writing—Original draft preparation. GVV: Conceptualization, Methodology, Writing—Original draft preparation, Revision, and Visualization.

Corresponding authors

Correspondence to John Hulme or Giau Van Vo.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.T., Hulme, J., Vo, T.K. et al. The Potential Crosstalk Between the Brain and Visceral Adipose Tissue in Alzheimer’s Development. Neurochem Res 47, 1503–1512 (2022). https://doi.org/10.1007/s11064-022-03569-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03569-1

Keywords

Navigation