Skip to main content

Advertisement

Log in

Human Umbilical Cord Mesenchymal Stem Cells Derived Exosomes Promote Neurological Function Recovery in a Rat Spinal Cord Injury Model

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Spinal cord injury (SCI) often leads to personal and social-economic consequences with limited therapeutic options. Exosomes derived from human umbilical cord mesenchymal stem cells (hUC-MSC) have been explored as a promising alternative to cell therapies. In the current study, we explored the mechanism of hUC-MSC derived exosome's ameliorative effect on the spinal cord injury by combining data from in vivo contusion SCI model and in vitro cell viability of PC12 cell line stimulated with lipopolysaccharide. Intravenous administration of hUC-MSC derived exosomes dramatically improved motor function of Sprague–Dawley rats after SCI, with reduced apoptosis demonstrated by increased expression of B-cell lymphoma 2 (BCL2), decreased BCL2 associated X, apoptosis regulator (Bax), and reduced cleaved caspase 9. Conversely, exosome treatment reduced the transcription levels of astrocytes marker GFAP and microglia marker IBA1, suggesting a reduced inflammatory state from SCI injury. Furthermore, exosome treatment in vitro increased the cell viability of PC12 cells. Exosome application activated the Wnt/β-Catenin signaling in the spinal cord. Our study demonstrated that hUC-MSC derived exosomes could improve motor function through anti-apoptosis and anti-inflammatory effects. BCL2/Bax and Wnt/β-catenin signaling pathways were involved in the SCI process and could potentially mediate the protective effect of hUC-MSC derived exosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data will be made available upon reasonable request to the corresponding author.

References

  1. Alam A, Thelin EP, Tajsic T, Khan DZ, Khellaf A, Patani R, Helmy A (2020) Cellular infiltration in traumatic brain injury. J Neuroinflamm 17:328

    Article  CAS  Google Scholar 

  2. Ye JT, Li FT, Huang SL, Xue JL, Aihaiti Y, Wu H, Liu RX, Cheng B (2019) Effects of ginsenoside Rb1 on spinal cord ischemia-reperfusion injury in rats. J Orthop Surg Res 14:259

    Article  PubMed  PubMed Central  Google Scholar 

  3. Anwar MA, Al Shehabi TS, Eid AH (2016) Inflammogenesis of secondary spinal cord injury. Front Cell Neurosci 10:98

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chen Y, Tang Y, Allen V, DeVivo MJ (2015) Aging and spinal cord injury: external causes of injury and implications for prevention. Top Spinal Cord Inj Rehabil 21:218–226

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yamazaki K, Kawabori M, Seki T, Houkin K (2020) Clinical trials of stem cell treatment for spinal cord injury. Int J Mol Sci 21:3394

    Article  Google Scholar 

  6. Kim DW, Staples M, Shinozuka K, Pantcheva P, Kang SD, Borlongan CV (2013) Wharton’s jelly-derived mesenchymal stem cells: phenotypic characterization and optimizing their therapeutic potential for clinical applications. Int J Mol Sci 14:11692–11712

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ullah I, Subbarao RB, Rho GJ (2015) Human mesenchymal stem cells—current trends and future prospective. Biosci Rep 35:e00191

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kyurkchiev D, Bochev I, Ivanova-Todorova E, Mourdjeva M, Oreshkova T, Belemezova K, Kyurkchiev S (2014) Secretion of immunoregulatory cytokines by mesenchymal stem cells. World J Stem Cells 6:552–570

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gao L, Peng Y, Xu W, He P, Li T, Lu X, Chen G (2020) Progress in stem cell therapy for spinal cord injury. Stem Cells Int 2020:2853650

    PubMed  PubMed Central  Google Scholar 

  10. Xie Q, Liu R, Jiang J, Peng J, Yang C, Zhang W, Wang S, Song J (2020) What is the impact of human umbilical cord mesenchymal stem cell transplantation on clinical treatment? Stem Cell Res Ther 11:519

    Article  PubMed  PubMed Central  Google Scholar 

  11. Saeedi P, Halabian R, Imani Fooladi AA (2019) A revealing review of mesenchymal stem cells therapy, clinical perspectives and Modification strategies. Stem Cell Investig 6:34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. de Witte SFH, Luk F, Sierra Parraga JM, Gargesha M, Merino A, Korevaar SS, Shankar AS, O’Flynn L, Elliman SJ, Roy D, Betjes MGH, Newsome PN, Baan CC, Hoogduijn MJ (2018) Immunomodulation by therapeutic mesenchymal stromal cells (MSC) is triggered through phagocytosis of MSC by monocytic cells. Stem Cells 36:602–615

    Article  PubMed  Google Scholar 

  13. Saat TC, van den Engel S, Bijman-Lachger W, Korevaar SS, Hoogduijn MJ, IJzermans JN, de Bruin RW (2016) Fate and effect of intravenously infused mesenchymal stem cells in a mouse model of hepatic ischemia reperfusion injury and resection. Stem Cells Int 2016:5761487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang Y, Liu Y, Liu H, Tang WH (2019) Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci 9:19

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rashed MH, Bayraktar E, Helal GK, Abd-Ellah MF, Amero P, Chavez-Reyes A, Rodriguez-Aguayo C (2017) Exosomes: from garbage bins to promising therapeutic targets. Int J Mol Sci 18:538

    Article  Google Scholar 

  16. Yu B, Shao H, Su C, Jiang Y, Chen X, Bai L, Zhang Y, Li Q, Zhang X, Li X (2016) Exosomes derived from MSCs ameliorate retinal laser injury partially by inhibition of MCP-1. Sci Rep 6:34562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fahmy SR, Soliman AM, El Ansary M, Elhamid SA, Mohsen H (2017) Therapeutic efficacy of human umbilical cord mesenchymal stem cells transplantation against renal ischemia/reperfusion injury in rats. Tissue Cell 49:369–375

    Article  CAS  PubMed  Google Scholar 

  18. da Silva-Junior AJ, Mesentier-Louro LA, Nascimento-Dos-Santos G, Teixeira-Pinheiro LC, Vasques JF, Chimeli-Ormonde L, Bodart-Santos V, de Carvalho LRP, Santiago MF, Mendez-Otero R (2021) Human mesenchymal stem cell therapy promotes retinal ganglion cell survival and target reconnection after optic nerve crush in adult rats. Stem Cell Res Ther 12:69

    Article  PubMed  PubMed Central  Google Scholar 

  19. Han C, Sun X, Liu L, Jiang H, Shen Y, Xu X, Li J, Zhang G, Huang J, Lin Z, Xiong N, Wang T (2016) Exosomes and their therapeutic potentials of stem cells. Stem Cells Int 2016:7653489

    PubMed  Google Scholar 

  20. Rivlin AS, Tator CH (1977) Objective clinical assessment of motor function after experimental spinal cord injury in the rat. J Neurosurg 47:577–581

    Article  CAS  PubMed  Google Scholar 

  21. Qiao C, Xu W, Zhu W, Hu J, Qian H, Yin Q, Jiang R, Yan Y, Mao F, Yang H, Wang X, Chen Y (2008) Human mesenchymal stem cells isolated from the umbilical cord. Cell Biol Int 32:8–15

    Article  CAS  PubMed  Google Scholar 

  22. Guo C, Cho KS, Li Y, Tchedre K, Antolik C, Ma J, Chew J, Utheim TP, Huang XA, Yu H, Malik MTA, Anzak N, Chen DF (2018) IGFBPL1 regulates axon growth through IGF-1-mediated signaling cascades. Sci Rep 8:2054

    Article  PubMed  PubMed Central  Google Scholar 

  23. Liu W, Wang Y, Gong F, Rong Y, Luo Y, Tang P, Zhou Z, Zhou Z, Xu T, Jiang T, Yang S, Yin G, Chen J, Fan J, Cai W (2019) Exosomes derived from bone mesenchymal stem cells repair traumatic spinal cord injury by suppressing the activation of A1 neurotoxic reactive astrocytes. J Neurotrauma 36:469–484

    Article  PubMed  Google Scholar 

  24. Banizs AB, Huang T, Dryden K, Berr SS, Stone JR, Nakamoto RK, Shi W, He J (2014) In vitro evaluation of endothelial exosomes as carriers for small interfering ribonucleic acid delivery. Int J Nanomed 9:4223–4230

    CAS  Google Scholar 

  25. Wang Y, Lai X, Wu D, Liu B, Wang N, Rong L (2021) Umbilical mesenchymal stem cell-derived exosomes facilitate spinal cord functional recovery through the miR-199a-3p/145-5p-mediated NGF/TrkA signaling pathway in rats. Stem Cell Res Ther 12:117

    Article  PubMed  PubMed Central  Google Scholar 

  26. Oyinbo CA (2011) Secondary injury mechanisms in traumatic spinal cord injury: a nugget of this multiply cascade. Acta Neurobiol Exp 71:281–299

    Google Scholar 

  27. Yang Y, Pang M, Chen YY, Zhang LM, Liu H, Tan J, Liu B, Rong LM (2020) Human umbilical cord mesenchymal stem cells to treat spinal cord injury in the early chronic phase: study protocol for a prospective, multicenter, randomized, placebo-controlled, single-blinded clinical trial. Neural Regen Res 15:1532–1538

    Article  PubMed  PubMed Central  Google Scholar 

  28. Choumerianou DM, Dimitriou H, Kalmanti M (2008) Stem cells: promises versus limitations. Tissue Eng Part B 14:53–60

    Article  CAS  Google Scholar 

  29. Zhou J, Benito-Martin A, Mighty J, Chang L, Ghoroghi S, Wu H, Wong M, Guariglia S, Baranov P, Young M, Gharbaran R, Emerson M, Mark MT, Molina H, Canto-Soler MV, Selgas HP, Redenti S (2018) Retinal progenitor cells release extracellular vesicles containing developmental transcription factors, microRNA and membrane proteins. Sci Rep 8:2823

    Article  PubMed  PubMed Central  Google Scholar 

  30. Xu J, Feng Z, Wang X, Xiong Y, Wang L, Ye L, Zhang H (2019) hUC-MSCs exert a neuroprotective effect via anti-apoptotic mechanisms in a neonatal HIE rat model. Cell Transplant 28:1552–1559

    Article  PubMed  PubMed Central  Google Scholar 

  31. Edlich F (2018) BCL-2 proteins and apoptosis: recent insights and unknowns. Biochem Biophys Res Commun 500:26–34

    Article  CAS  PubMed  Google Scholar 

  32. Li G, Jia Z, Cao Y, Wang Y, Li H, Zhang Z, Bi J, Lv G, Fan Z (2015) Mitochondrial division inhibitor 1 ameliorates mitochondrial injury, apoptosis, and motor dysfunction after acute spinal cord injury in rats. Neurochem Res 40:1379–1392

    Article  CAS  PubMed  Google Scholar 

  33. Zong WX, Li C, Hatzivassiliou G, Lindsten T, Yu QC, Yuan J, Thompson CB (2003) Bax and Bak can localize to the endoplasmic reticulum to initiate apoptosis. J Cell Biol 162:59–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Steinhart Z, Angers S (2018) Wnt signaling in development and tissue homeostasis. Development 145:dev146589

    Article  PubMed  Google Scholar 

  35. Cuzzocrea S, Genovese T, Mazzon E, Crisafulli C, Di Paola R, Muia C, Collin M, Esposito E, Bramanti P, Thiemermann C (2006) Glycogen synthase kinase-3 beta inhibition reduces secondary damage in experimental spinal cord trauma. J Pharmacol Exp Ther 318:79–89

    Article  CAS  PubMed  Google Scholar 

  36. Yin ZS, Zu B, Chang J, Zhang H (2008) Repair effect of Wnt3a protein on the contused adult rat spinal cord. Neurol Res 30:480–486

    Article  PubMed  Google Scholar 

  37. Yuan S, Shi Y, Tang SJ (2012) Wnt signaling in the pathogenesis of multiple sclerosis-associated chronic pain. J Neuroimmune Pharmacol 7:904–913

    Article  PubMed  Google Scholar 

  38. Ding M, Shen Y, Wang P, Xie Z, Xu S, Zhu Z, Wang Y, Lyu Y, Wang D, Xu L, Bi J, Yang H (2018) Exosomes isolated from human umbilical cord mesenchymal stem cells alleviate neuroinflammation and reduce amyloid-beta deposition by modulating microglial activation in Alzheimer’s disease. Neurochem Res 43:2165–2177

    Article  CAS  PubMed  Google Scholar 

  39. Hu SL, Luo HS, Li JT, Xia YZ, Li L, Zhang LJ, Meng H, Cui GY, Chen Z, Wu N, Lin JK, Zhu G, Feng H (2010) Functional recovery in acute traumatic spinal cord injury after transplantation of human umbilical cord mesenchymal stem cells. Crit Care Med 38:2181–2189

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

None.

Funding

The authors have no financial interests to disclose in relation to this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Guo.

Ethics declarations

Conflict of interest

All the authors declare that they have no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, J., Guo, Y. Human Umbilical Cord Mesenchymal Stem Cells Derived Exosomes Promote Neurological Function Recovery in a Rat Spinal Cord Injury Model. Neurochem Res 47, 1532–1540 (2022). https://doi.org/10.1007/s11064-022-03545-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03545-9

Keywords

Navigation