Skip to main content
Log in

Inhibition of Noncanonical Ca2+ Oscillation/Calcineurin/GSK-3β Pathway Contributes to Anti-Inflammatory Effect of Sigma-1 Receptor Activation

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Further understanding the mechanism for microglia activation is necessary for developing novel anti-inflammatory strategies. Our previous study found that the activation of sigma-1 receptor can effectively inhibit the neuroinflammation, independent of the canonical mechanisms, such as NF-κB, JNK and ERK inflammatory pathways. Thus, it is reasonable that an un-identified, non-canonical pathway contributes to the activation of microglia. In the present study, we found that a sigma-1 receptor agonist of 2-morpholin-4-ylethyl 1-phenylcyclohexane-1-carboxylate (PRE-084) suppressed lipopolysaccharide (LPS) elevated nitric oxide (NO) content in BV-2 microglia culture supernatant and LPS-raised mRNA levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), inducible nitric oxide synthase (iNOS) in BV-2 microglia. Moreover, PRE-084 alleviated LPS-increased Ser 9 de-phosphorylation of glycogen synthase kinase-3 beta (GSK-3β), LPS-elevated catalytic activity of calcineurin, and LPS-raised percent and frequency of Ca2+ oscillatory BV-2 cells. We further found that the inhibitory effect of PRE-084 was reversed by a calcineurin activator of chlorogenic acid and a GSK-3β activator of pyrvinium. Moreover, an IP3 receptor inhibitor of 2-aminoethoxydiphenyl borate mimicked the anti-inflammatory activity of PRE-084. Thus, we identified a noncanonical pro-neuroinflammary pathway of Ca2+ oscillation/Calcineurin/GSK-3β and the inhibition of this pathway is necessary for the anti-inflammatory activity of sigma-1 receptor activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

2-APB:

2-Aminoethoxydiphenyl borate

BD1047:

N′-[2-(3,4-dichlorophenyl)ethyl]-N,N, N′-trimethylethane-1,2-diamine

CGA:

Chlorogenic acid

ERK:

Extracellular-signal-regulated kinase

JNK:

C-Jun N terminal kinase

IKK:

IκB kinase

iNOS:

Inducible nitric oxide synthase

IκBα:

Inhibitor of nuclear factor-κB, α

IL-1β:

Interleukin-1β

IL-10:

Interleukin-10

IP3 :

Inositol triphosphate

LPS:

Lipopolysaccharide

MAPK:

Mitogen-activated protein kinase

MTT:

3-(4,5-Dimethylthiazol-2yl)-2,5-diphenyl tetrazoliumbromide

Nrf2:

Nuclear factor erythroid-2 related factor 2

NO:

Nitric oxide

PRE-084:

2-Morpholin-4-ylethyl 1-phenylcyclohexane-1-carboxylate

ROS:

Reactive oxygen species

S1R:

Sigma-1 receptor

SKF83959:

3-Methyl-6-chloro-7,8-hydroxy-1-(3-methylphenyl)-2, 3, 4, 5-tetrahydro-1H-3-benzazepine

SOCE:

Store-operated Ca2+ entry TGF-β, transforming growth factor-β

TNF-α:

Tumor necrosis factor-α

References

  1. Regen F, Hellmann-Regen J, Costantini E, Reale M (2017) Neuroinflammation and Alzheimer’s disease: implications for microglial activation. Curr Alzheimer Res 14:1140–1148

    Article  PubMed  Google Scholar 

  2. Lenart N, Brough D, Denes A (2016) Inflammasomes link vascular disease with neuroinflammation and brain disorders. J Cereb Blood Flow Metab 36:1668–1685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Eyo UB, Murugan M, Wu LJ (2017) Microglia-neuron communication in epilepsy. Glia 65:5–18

    Article  PubMed  Google Scholar 

  4. Subhramanyam CS, Wang C, Hu Q, Dheen ST (2019) Microglia-mediated neuroinflammation in neurodegenerative diseases. Semin Cell Dev Biol 94:112–120

    Article  CAS  PubMed  Google Scholar 

  5. Penke B, Fulop L, Szucs M, Frecska E (2018) The role of sigma-1 receptor, an intracellular chaperone in neurodegenerative diseases. Curr Neuropharmacol 16:97–116

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Su TP, Su TC, Nakamura Y, Tsai SY (2016) The sigma-1 receptor as a pluripotent modulator in living systems. Trends Pharmacol Sci 37:262–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jia J, Cheng J, Wang C, Zhen X (2018) Sigma-1 receptor-modulated neuroinflammation in neurological diseases. Front Cell Neurosci 12:314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dong H, Ma Y, Ren Z, Xu B, Zhang Y, Chen J, Yang B (2016) Sigma-1 receptor modulates neuroinflammation after traumatic brain injury. Cell Mol Neurobiol 36:639–645

    Article  CAS  PubMed  Google Scholar 

  9. Wu Z, Li L, Zheng LT, Xu Z, Guo L, Zhen X (2015) Allosteric modulation of sigma-1 receptors by SKF83959 inhibits microglia-mediated inflammation. J Neurochem 134:904–914

    Article  CAS  PubMed  Google Scholar 

  10. Zhao J, Ha Y, Liou GI, Gonsalvez GB, Smith SB, Bollinger KE (2014) Sigma receptor ligand, (+)-pentazocine, suppresses inflammatory responses of retinal microglia. Invest Ophthalmol Vis Sci 55:3375–3384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rosen DA, Seki SM, Fernandez-Castaneda A, Beiter RM, Eccles JD, Woodfolk JA, Gaultier A (2019) Modulation of the sigma-1 receptor-IRE1 pathway is beneficial in preclinical models of inflammation and sepsis. Sci Transl Med 11:5266

    Article  Google Scholar 

  12. Baumgart S, Chen NM, Zhang JS, Billadeau DD, Gaisina IN, Kozikowski AP, Singh SK, Fink D, Strobel P, Klindt C, Zhang L, Bamlet WR, Koenig A, Hessmann E, Gress TM, Ellenrieder V, Neesse A (2016) GSK-3beta governs inflammation-induced NFATc2 signaling hubs to promote pancreatic cancer progression. Mol Cancer Ther 15:491–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Feng X, Guan W, Zhao Y, Wang C, Song M, Yao Y, Yang T, Fan H (2019) Dexmedetomidine ameliorates lipopolysaccharide-induced acute kidney injury in rats by inhibiting inflammation and oxidative stress via the GSK-3beta/Nrf2 signaling pathway. J Cell Physiol 234:18994–19009

    Article  CAS  PubMed  Google Scholar 

  14. Wang Y, Guo L, Jiang HF, Zheng LT, Zhang A, Zhen XC (2016) Allosteric modulation of sigma-1 receptors elicits rapid antidepressant activity. CNS Neurosci Ther 22:368–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim Y, Lee YI, Seo M, Kim SY, Lee JE, Youn HD, Kim YS, Juhnn YS (2009) Calcineurin dephosphorylates glycogen synthase kinase-3 beta at serine-9 in neuroblast-derived cells. J Neurochem 111:344–354

    Article  CAS  PubMed  Google Scholar 

  16. Tosello V, Bordin F, Yu J, Agnusdei V, Indraccolo S, Basso G, Amadori A, Piovan E (2016) Calcineurin and GSK-3 inhibition sensitizes T-cell acute lymphoblastic leukemia cells to apoptosis through X-linked inhibitor of apoptosis protein degradation. Leukemia 30:812–822

    Article  CAS  PubMed  Google Scholar 

  17. Wang Y, Gao C, Gao T, Zhao L, Zhu S, Guo L (2021) Plasma exosomes from depression ameliorate inflammation-induced depressive-like behaviors via sigma-1 receptor delivery. Brain Behav Immun 94:225–234

    Article  CAS  PubMed  Google Scholar 

  18. Srivats S, Balasuriya D, Pasche M, Vistal G, Edwardson JM, Taylor CW, Murrell-Lagnado RD (2016) Sigma1 receptors inhibit store-operated Ca2+ entry by attenuating coupling of STIM1 to Orai1. J Cell Biol 213:65–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li J, Shi C, Ding Z, Jin W (2020) Glycogen synthase kinase 3beta promotes postoperative cognitive dysfunction by inducing the M1 polarization and migration of microglia. Mediators Inflamm 2020:7860829

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wu X, Pan L, Liu Y, Jiang P, Lee I, Drevensek-Olenik I, Zhang X, Xu J (2013) Cell-cell communication induces random spikes of spontaneous calcium oscillations in multi-BV-2 microglial cells. Biochem Biophys Res Commun 431:664–669

    Article  CAS  PubMed  Google Scholar 

  21. Chao J, Zhang Y, Du L, Zhou R, Wu X, Shen K, Yao H (2017) Molecular mechanisms underlying the involvement of the Sigma-1 receptor in methamphetamine-mediated microglial polarization. Sci Rep 7:11540

    Article  PubMed  PubMed Central  Google Scholar 

  22. Peviani M, Salvaneschi E, Bontempi L, Petese A, Manzo A, Rossi D, Salmona M, Collina S, Bigini P, Curti D (2014) Neuroprotective effects of the Sigma-1 receptor (S1R) agonist PRE-084, in a mouse model of motor neuron disease not linked to SOD1 mutation. Neurobiol Dis 62:218–232

    Article  CAS  PubMed  Google Scholar 

  23. Pan J, Shen F, Tian K, Wang M, Xi Y, Li J, Huang Z (2019) Triptolide induces oxidative damage in NRK-52E cells through facilitating Nrf2 degradation by ubiquitination via the GSK-3beta/Fyn pathway. Toxicol In Vitro 58:187–194

    Article  CAS  PubMed  Google Scholar 

  24. Maekawa T, Hosur K, Abe T, Kantarci A, Ziogas A, Wang B, Van Dyke TE, Chavakis T, Hajishengallis G (2015) Antagonistic effects of IL-17 and D-resolvins on endothelial Del-1 expression through a GSK-3beta-C/EBPbeta pathway. Nat Commun 6:8272

    Article  PubMed  Google Scholar 

  25. Liu SS, Lv XX, Liu C, Qi J, Li YX, Wei XP, Li K, Hua F, Cui B, Zhang XW, Yu JJ, Yu JM, Wang F, Shang S, Zhao CX, Hou XY, Yao ZG, Li PP, Li X, Huang B, Hu ZW (2019) Targeting degradation of the transcription factor C/EBPbeta reduces lung fibrosis by restoring activity of the ubiquitin-editing enzyme A20 in macrophages. Immunity 51:522–534

    Article  CAS  PubMed  Google Scholar 

  26. Jaworski T (2020) Control of neuronal excitability by GSK-3beta: epilepsy and beyond. Biochim Biophys Acta Mol Cell Res 1867:118745

    Article  CAS  PubMed  Google Scholar 

  27. Park YJ, Yoo SA, Kim M, Kim WU (2020) The role of calcium-calcineurin-NFAT signaling pathway in health and autoimmune diseases. Front Immunol 11:195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hannanta-Anan P, Chow BY (2016) optogenetic control of calcium oscillation waveform defines NFAT as an integrator of calcium load. Cell Syst 2:283–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hayashi T, Su TP (2007) Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell 131:596–610

    Article  CAS  PubMed  Google Scholar 

  30. Zhang S, Fritz N, Ibarra C, Uhlen P (2011) Inositol 1,4,5-trisphosphate receptor subtype-specific regulation of calcium oscillations. Neurochem Res 36:1175–1185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wu Z, Bowen WD (2008) Role of sigma-1 receptor C-terminal segment in inositol 1,4,5-trisphosphate receptor activation: constitutive enhancement of calcium signaling in MCF-7 tumor cells. J Biol Chem 283:28198–28215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hayashi T, Su TP (2003) Intracellular dynamics of sigma-1 receptors (sigma(1) binding sites) in NG108-15 cells. J Pharmacol Exp Ther 306:726–733

    Article  CAS  PubMed  Google Scholar 

  33. Tagashira H, Bhuiyan MS, Shioda N, Fukunaga K (2014) Fluvoxamine rescues mitochondrial Ca2+ transport and ATP production through sigma(1)-receptor in hypertrophic cardiomyocytes. Life Sci 95:89–100

    Article  CAS  PubMed  Google Scholar 

  34. Michaelis M, Nieswandt B, Stegner D, Eilers J, Kraft R (2015) STIM1, STIM2, and Orai1 regulate store-operated calcium entry and purinergic activation of microglia. Glia 63:652–663

    Article  PubMed  Google Scholar 

  35. Gilbert DF, Stebbing MJ, Kuenzel K, Murphy RM, Zacharewicz E, Buttgereit A, Stokes L, Adams DJ, Friedrich O (2016) Store-operated Ca(2+) entry (SOCE) and purinergic receptor-mediated Ca(2+) homeostasis in murine bv2 microglia cells: early cellular responses to ATP-mediated microglia activation. Front Mol Neurosci 9:111

    Article  PubMed  PubMed Central  Google Scholar 

  36. Heo DK, Lim HM, Nam JH, Lee MG, Kim JY (2015) Regulation of phagocytosis and cytokine secretion by store-operated calcium entry in primary isolated murine microglia. Cell Signal 27:177–186

    Article  CAS  PubMed  Google Scholar 

  37. Gasparre G, Abate C, Carlucci R, Berardi F, Cassano G (2017) The sigma1 receptor agonist (+)-pentazocine increases store-operated Ca(2+) entry in MCF7sigma1 and SK-N-SH cell lines. Pharmacol Rep 69:542–545

    Article  CAS  PubMed  Google Scholar 

  38. Brailoiu GC, Deliu E, Console-Bram LM, Soboloff J, Abood ME, Unterwald EM, Brailoiu E (2016) Cocaine inhibits store-operated Ca2+ entry in brain microvascular endothelial cells: critical role for sigma-1 receptors. Biochem J 473:1–5

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This project was supported by grants from the National Natural Science Foundation of China (Grant No. 81872847, 82173803). Supports provided from the Priority Academic Program Development of Jiangsu Higher Education Institutes (PAPD) and Jiangsu Overseas Visiting Scholar Program for University Prominent Young and Middle-Aged Teacher and President are also appreciated.

Author information

Authors and Affiliations

Authors

Contributions

Investigation, writing—original draft: [TG]; investigation: [CG]; investigation: [ZL]; conceptualization, funding acquisition: [YW]; investigation: [XJ]; investigation: [HT]; supervision, writing—review & editing: [QL]; conceptualization, funding acquisition, supervision, writing—review & editing: [LG].

Corresponding authors

Correspondence to Qian Lu or Lin Guo.

Ethics declarations

Conflict of interest

None of the authors has any conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 205 kb)

Supplementary file2 (AVI 649 kb)

Supplementary file3 (AVI 2106 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, T., Gao, C., Liu, Z. et al. Inhibition of Noncanonical Ca2+ Oscillation/Calcineurin/GSK-3β Pathway Contributes to Anti-Inflammatory Effect of Sigma-1 Receptor Activation. Neurochem Res 47, 264–278 (2022). https://doi.org/10.1007/s11064-021-03439-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03439-2

Keywords

Navigation