Skip to main content

Advertisement

Log in

The Role of Pink1-Mediated Mitochondrial Pathway in Propofol-Induced Developmental Neurotoxicity

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The mechanisms underlying propofol-induced toxicity in developing neurons are still unclear. The aim of present study was to explore the role of Pink1 mediated mitochondria pathway in propofol-induced developmental neurotoxicity. The primary Neural Stem Cells (NSCs) were isolated from the hippocampus of E15.5 mice embryos and then treated with propofol. The effects of propofol on proliferation, differentiation, apoptosis, mitochondria ultrastructure and MMP of NSCs were investigated. In addition, the abundance of Pink1 and a group of mitochondria related proteins in the cytoplasm and/or mitochondria were investigated, which mainly included CDK1, Drp1, Parkin1, DJ-1, Mfn1, Mfn2 and OPA1. Moreover, the relationship between Pink1 and these molecules was explored using gene silencing, or pretreatment with protein inhibitors. Finally, the NSCs were pretreated with mitochondrial specific antioxidant (MitoQ) or Drp1 inhibitor (Mdivi-1), and then the toxic effects of propofol on NSCs were investigated. Our results indicated that propofol treatment inhibited NSCs proliferation and division, and promoted NSCs apoptosis. Propofol induced significant NSCs mitochondria deformation, vacuolization and swelling, and decreased MMP. Additional studies showed that propofol affected a group of mitochondria related proteins via Pink1 inhibition, and CDK1, Drp1, Parkin1 and DJ-1 are the important downstream proteins of Pink1. Finally, the effects of propofol on proliferation, differentiation, apoptosis, mitochondrial ultrastructure and MMP of NSCs were significantly attenuated by MitoQ or Mdivi-1 pretreatment. The present study demonstrated that propofol regulates the proliferation, differentiation and apoptosis of NSCs via Pink1mediated mitochondria pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data sets used and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Chidambaran V, Costandi A, D’Mello A (2015) Propofol: a review of its role in pediatric anesthesia and sedation. CNS Drugs 29(7):543–563

    Article  CAS  Google Scholar 

  2. Briner A, Nikonenko I, De Roo M, Dayer A, Muller D, Vutskits L (2011) Developmental Stage-dependent persistent impact of propofol anesthesia on dendritic spines in the rat medial prefrontal cortex. Anesthesiology 115(2):282–293

    Article  CAS  Google Scholar 

  3. Bosnjak ZJ, Logan S, Liu Y, Bai X (2016) Recent insights into molecular mechanisms of Propofol-induced developmental neurotoxicity: implications for the protective strategies. Anesth Analg 123(5):1286–1296

    Article  CAS  Google Scholar 

  4. Liang C, Du F, Wang J, Cang J, Xue Z (2019) Propofol regulates neural stem cell proliferation and differentiation via calmodulin-dependent protein kinase II/AMPK/ATF5 signaling Axis. Anesth Analg 129(2):608–617

    Article  CAS  Google Scholar 

  5. Rojas-Charry L, Cookson MR, Nino A, Arboleda H, Arboleda G (2014) Downregulation of Pink1 influences mitochondrial fusion-fission machinery and sensitizes to neurotoxins in dopaminergic cells. Neurotoxicology 44:140–148

    Article  CAS  Google Scholar 

  6. Twaroski DM, Yan Y, Zaja I, Clark E, Bosnjak ZJ, Bai X (2015) Altered mitochondrial dynamics contributes to propofol-induced cell death in human stem cell-derived neurons. Anesthesiology 123(5):1067–1083

    Article  CAS  Google Scholar 

  7. Bai X, Yan Y, Canfield S, Muravyeva MY, Kikuchi C, Zaja I, Corbett JA, Bosnjak ZJ (2013) Ketamine enhances human neural stem cell proliferation and induces neuronal apoptosis via reactive oxygen species-mediated mitochondrial pathway. Anesth Analg 116(4):869–880

    Article  CAS  Google Scholar 

  8. Liu F, Liu S, Patterson TA, Fogle C, Hanig JP, Wang C, Slikker W Jr (2020) Protective Effects of Xenon on Propofol-Induced Neurotoxicity in Human Neural Stem Cell-Derived Models. Mol Neurobiol 57(1):200–207

    Article  Google Scholar 

  9. Liu F, Rainosek SW, Sadovova N, Fogle CM, Patterson TA, Hanig JP, Paule MG, Slikker W Jr, Wang C (2014) Protective effect of acetyl-L-carnitine on propofol-induced toxicity in embryonic neural stem cells. Neurotoxicology 42:49–57

    Article  Google Scholar 

  10. Liu F, Liu S, Patterson TA, Fogle C, Hanig JP, Slikker W Jr, Wang C (2020) Effects of xenon-based anesthetic exposure on the expression levels of Polysialic acid neural cell adhesion molecule (PSA-NCAM) on human neural stem cell-derived neurons. Mol Neurobiol 57(1):217–225

    Article  CAS  Google Scholar 

  11. Lou G, Palikaras K, Lautrup S, Scheibye-Knudsen M, Tavernarakis N, Fang EF (2019) Mitophagy and Neuroprotection. Trends Mol Med. https://doi.org/10.1016/j.molmed.2019.07.002

    Article  PubMed  Google Scholar 

  12. Liang C, Du F, Cang J, Xue Z (2018) Pink1 attenuates propofol-induced apoptosis and oxidative stress in developing neurons. J Anesth 32(1):62–69

    Article  Google Scholar 

  13. Huang E, Qu D, Huang T, Rizzi N, Boonying W, Krolak D, Ciana P, Woulfe J, Klein C, Slack RS et al (2017) PINK1-mediated phosphorylation of LETM1 regulates mitochondrial calcium transport and protects neurons against mitochondrial stress. Nat Commun 8(1):1399

    Article  Google Scholar 

  14. Choi I, Choi DJ, Yang H, Woo JH, Chang MY, Kim JY, Sun W, Park SM, Jou I, Lee SH et al (2016) PINK1 expression increases during brain development and stem cell differentiation, and affects the development of GFAP-positive astrocytes. Mol Brain 9:5

    Article  Google Scholar 

  15. Agnihotri SK, Shen R, Li J, Gao X, Bueler H (2017) Loss of PINK1 leads to metabolic deficits in adult neural stem cells and impedes differentiation of newborn neurons in the mouse hippocampus. FASEB J 31(7):2839–2853

    Article  CAS  Google Scholar 

  16. Feligioni M, Mango D, Piccinin S, Imbriani P, Iannuzzi F, Caruso A, De Angelis F, Blandini F, Mercuri NB, Pisani A et al (2016) Subtle alterations of excitatory transmission are linked to presynaptic changes in the hippocampus of PINK1-deficient mice. Synapse 70(6):223–230

    Article  CAS  Google Scholar 

  17. Zhan L, Lu Z, Zhu X, Xu W, Li L, Li X, Chen S, Sun W, Xu E (2018) Hypoxic preconditioning attenuates necroptotic neuronal death induced by global cerebral ischemia via Drp1-dependent signaling pathway mediated by CaMKIIalpha inactivation in adult rats. FASEB J. https://doi.org/10.1096/fj.201800111RR

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wang C, Liu F, Patterson TA, Paule MG, Slikker W Jr (2013) Utilization of neural stem cell-derived models to study anesthesia-related toxicity and preventative approaches. Mol Neurobiol 48(2):302–307

    Article  CAS  Google Scholar 

  19. Erasso DM, Camporesi EM, Mangar D, Saporta S (2013) Effects of isoflurane or propofol on postnatal hippocampal neurogenesis in young and aged rats. Brain Res 1530:1–12

    Article  CAS  Google Scholar 

  20. Stepanenko AA, Heng HH (2017) Transient and stable vector transfection: Pitfalls, off-target effects, artifacts. Mutat Res 773:91–103

    Article  CAS  Google Scholar 

  21. Viviand X, Berdugo L, De La Noe CA, Lando A, Martin C (2003) Target concentration of propofol required to insert the laryngeal mask airway in children. Paediatr Anaesth 13(3):217–222

    Article  CAS  Google Scholar 

  22. Varveris DA, Morton NS (2002) Target controlled infusion of propofol for induction and maintenance of anaesthesia using the paedfusor: an open pilot study. Paediatr Anaesth 12(7):589–593

    Article  Google Scholar 

  23. Hume-Smith HV, Sanatani S, Lim J, Chau A, Whyte SD (2008) The effect of propofol concentration on dispersion of myocardial repolarization in children. Anesth Analg 107(3):806–810

    Article  CAS  Google Scholar 

  24. Zhang C, Deng Y, Dai H, Zhou W, Tian J, Bing G, Zhao L (2017) Effects of dimethyl sulfoxide on the morphology and viability of primary cultured neurons and astrocytes. Brain Res Bull 128:34–39

    Article  CAS  Google Scholar 

  25. Jiang Q, Wang Y, Shi X (2017) Propofol Inhibits Neurogenesis of Rat Neural Stem Cells by Upregulating MicroRNA-141-3p. Stem Cells Dev 26(3):189–196

    Article  CAS  Google Scholar 

  26. Yan Y, Qiao S, Kikuchi C, Zaja I, Logan S, Jiang C, Arzua T, Bai X (2017) Propofol Induces Apoptosis of Neurons but Not Astrocytes, Oligodendrocytes, or Neural Stem Cells in the Neonatal Mouse Hippocampus. Brain Sci. https://doi.org/10.3390/brainsci7100130

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bercker S, Bert B, Bittigau P, Felderhoff-Muser U, Buhrer C, Ikonomidou C, Weise M, Kaisers UX, Kerner T (2009) Neurodegeneration in newborn rats following propofol and sevoflurane anesthesia. Neurotox Res 16(2):140–147

    Article  CAS  Google Scholar 

  28. Wei Y, Chiang WC, Sumpter R Jr, Mishra P, Levine B (2017) Prohibitin 2 Is an Inner Mitochondrial Membrane Mitophagy Receptor. Cell. https://doi.org/10.1016/j.cell.2016.11.042

    Article  PubMed  PubMed Central  Google Scholar 

  29. Evans CS, Holzbaur ELF (2019) Quality Control in Neurons: Mitophagy and Other Selective Autophagy Mechanisms. J Mol Biol. https://doi.org/10.1016/j.jmb.2019.06.031

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yin J, Guo J, Zhang Q, Cui L, Zhang L, Zhang T, Zhao J, Li J, Middleton A, Carmichael PL et al (2018) Doxorubicin-induced mitophagy and mitochondrial damage is associated with dysregulation of the PINK1/parkin pathway. Toxicol In Vitro 51:1–10

    Article  CAS  Google Scholar 

  31. Salazar C, Ruiz-Hincapie P, Ruiz LM (2018) The Interplay among PINK1/PARKIN/Dj-1 Network during Mitochondrial Quality Control in Cancer Biology: Protein Interaction Analysis. Cells. https://doi.org/10.3390/cells7100154

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wu J, Kharebava G, Piao C, Stoica BA, Dinizo M, Sabirzhanov B, Hanscom M, Guanciale K, Faden AI (2012) Inhibition of E2F1/CDK1 pathway attenuates neuronal apoptosis in vitro and confers neuroprotection after spinal cord injury in vivo. PLoS ONE 7(7):e42129

    Article  CAS  Google Scholar 

  33. Verdaguer E, Jorda EG, Canudas AM, Jimenez A, Pubill D, Escubedo E, Camarasa J, Pallas M, Camins A (2004) Antiapoptotic effects of roscovitine in cerebellar granule cells deprived of serum and potassium: a cell cycle-related mechanism. Neurochem Int 44(4):251–261

    Article  CAS  Google Scholar 

  34. Hilton GD, Stoica BA, Byrnes KR, Faden AI (2008) Roscovitine reduces neuronal loss, glial activation, and neurologic deficits after brain trauma. J Cereb Blood Flow Metab 28(11):1845–1859

    Article  CAS  Google Scholar 

  35. Niu Z, Zhang W, Gu X, Zhang X, Qi Y, Zhang Y (2016) Mitophagy inhibits proliferation by decreasing cyclooxygenase-2 (COX-2) in arsenic trioxide-treated HepG2 cells. Environ Toxicol Pharmacol 45:212–221

    Article  CAS  Google Scholar 

  36. Gong G, Song M, Csordas G, Kelly DP, Matkovich SJ, Dorn GW 2nd (2015) Parkin-mediated mitophagy directs perinatal cardiac metabolic maturation in mice. Science. https://doi.org/10.1126/science.aad2459

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by Natural Science Foundation of Shanghai (20ZR1411000, 20ZR1439800).

Author information

Authors and Affiliations

Authors

Contributions

CL; performed the experiments: MS, JZ; Statistical analysis: CM, XH, Wrote the paper CL. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Changhong Miao or Xiaodan Han.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical Approval

Our study was approved by the Ethics Review Board of Zhongshan Hospital.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, C., Sun, M., Zhong, J. et al. The Role of Pink1-Mediated Mitochondrial Pathway in Propofol-Induced Developmental Neurotoxicity. Neurochem Res 46, 2226–2237 (2021). https://doi.org/10.1007/s11064-021-03359-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03359-1

Keywords

Navigation