Skip to main content

Advertisement

Log in

Phosphorylation of 5-LOX: The Potential Set-point of Inflammation

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Inflammation secondary to tissue injuries serves as a double-edged sword that determines the prognosis of tissue repair. As one of the most important enzymes controlling the inflammation process by producing leukotrienes, 5-lipoxygenase (5-LOX, also called 5-LO) has been one of the therapeutic targets in regulating inflammation for a long time. Although a large number of 5-LOX inhibitors have been explored, only a few of them can be applied clinically. Surprisingly, phosphorylation of 5-LOX reveals great significance in regulating the subcellular localization of 5-LOX, which has proven to be an important mechanism underlying the enzymatic activities of 5-LOX. There are at least three phosphorylation sites in 5-LOX jointly to determine the final inflammatory outcomes, and adjustment of phosphorylation of 5-LOX at different phosphorylation sites brings hope to provide an unrecognized means to regulate inflammation. The present review intends to shed more lights into the set-point-like mechanisms of phosphorylation of 5-LOX and its possible clinical application by summarizing the biological properties of 5-LOX, the relationship of 5-LOX with neurodegenerative diseases and brain injuries, the phosphorylation of 5-LOX at different sites, the regulatory effects and mechanisms of phosphorylated 5-LOX upon inflammation, as well as the potential anti-inflammatory application through balancing the phosphorylation-depended set-point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

FDA:

Food and Drug Administration

CNS:

Central nervous systems

AA:

Arachidonic acid

FLAP:

5-Lipoxygenase-activating protein

LOX:

Lipoxygenase

LT:

Leukotriene

cPLA2:

Cytosolic phospholipase A2

LTA4:

Leukotriene A4

LTB4:

Leukotriene B4

LTC4:

Leukotriene C4

LTD4:

Leukotriene D4

iNOS:

Inducible nitric oxide synthase

PTM:

Post-translational modification

TBI:

Traumatic brain injury

AD:

Alzheimer’s disease

Aβ:

Amyloid beta

NFT:

Neurofibrillary tangles

NSC:

Neural stem cell

CLP:

Coactosin-like protein

BMMC:

Mouse bone marrow-derived mast cells

PKA:

Protein kinase A

CaMKII:

Ca2 + /calmodulin-dependent kinase

MAPKAPK:

Mitogen-activated protein kinase-activated protein kinase

MAP:

Mitogen-activated protein

MK:

Mitogen kinase (AP kinase)

COX:

Cyclooxygenase

cPLA2:

Cytosolic phospholipase A2

PG:

Prostaglandin

PMNL:

Polymorphonuclear leukocyte

15-epi- LXA4:

15-Epi-lipoxin A4

ATP:

Adenosine triphosphate

15R-HETE:

(15R)-15-hydroxy-5,8,11-cis-13-trans-eicosa-tetraenoic acid

5-H(p)ETE:

5S-hydro(pero)xy-6,8,11,14(E,Z,Z,Z)-eicosatetraenoic acid

S271:

Serine 271

S523:

Serine 523

S663:

Serine 663

p38:

P38 MAP kinase

ERK:

Extracellular signal-regulated kinase

References

  1. Goodman JE, Bowman ED, Chanock SJ, Alberg AJ, Harris CC (2004) Arachidonate lipoxygenase (ALOX) and cyclooxygenase (COX) polymorphisms and colon cancer risk. Carcinogenesis 25:2467–2472

    CAS  PubMed  Google Scholar 

  2. Drazen JM, Yandava CN, Dubé L, Szczerback N, Hippensteel R, Pillari A, Israel E, Schork N, Silverman ES, Katz DA (1999) Pharmacogenetic association between ALOX5 promoter genotype and the response to anti-asthma treatment. Nat Genet 22:168–170

    CAS  PubMed  Google Scholar 

  3. Rådmark O, Werz O, Steinhilber D, Samuelsson B (2015) 5-Lipoxygenase, a key enzyme for leukotriene biosynthesis in health and disease. Biochimica et Biophysica Acta (BBA) Mol Cell Biol Lipids 1851:331–339

    Google Scholar 

  4. Halle M, Christersdottir T, Bäck M (2016) Chronic adventitial inflammation, vasa vasorum expansion, and 5-lipoxygenase up-regulation in irradiated arteries from cancer survivors. FASEB J 30:3845–3852

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Manev H, Manev R (2006) 5-Lipoxygenase (ALOX5) and FLAP (ALOX5AP) gene polymorphisms as factors in vascular pathology and Alzheimer's disease. Med Hypotheses 66:501–503

    CAS  PubMed  Google Scholar 

  6. Qu T, Manev R, Manev H (2001) 5-Lipoxygenase (5-LOX) promoter polymorphism in patients with early-onset and late-onset Alzheimer's disease. J Neuropsychiatry 13:304–305

    CAS  Google Scholar 

  7. Manev H (2000) 5-Lipoxygenase gene polymorphism and onset of Alzheimer's disease. Med Hypotheses 54:75–76

    CAS  PubMed  Google Scholar 

  8. Vagnozzi AN, Giannopoulos PF, Praticò D (2018) Brain 5-lipoxygenase over-expression worsens memory, synaptic integrity, and tau pathology in the P301S mice. Aging Cell 17:e12695

    Google Scholar 

  9. Arendt T, Stieler JT, Holzer M (2016) Tau and tauopathies. Brain Res Bull 126:238–292

    CAS  PubMed  Google Scholar 

  10. Chu J, Giannopoulos PF, Ceballos-Diaz C, Golde TE, Pratico D (2012) Adeno-associated virus-mediated brain delivery of 5-lipoxygenase modulates the AD-like phenotype of APP mice. Mol Neurodegener 7:1

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Giannopoulos PF, Chu J, Sperow M, Li J-G, Yu WH, Kirby LG, Abood M, Praticò D (2015) Pharmacologic inhibition of 5-lipoxygenase improves memory, rescues synaptic dysfunction, and ameliorates tau pathology in a transgenic model of tauopathy. Biol Psychiat 78:693–701

    CAS  PubMed  Google Scholar 

  12. Funk CD (2001) Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294:1871–1875

    CAS  PubMed  Google Scholar 

  13. MacMillan DK, Hill E, Sala A, Sigal E, Shuman T, Henson PM, Murphy RC (1994) Eosinophil 15-lipoxygenase is a leukotriene A4 synthase. J Biol Chem 269:26663–26668

    CAS  PubMed  Google Scholar 

  14. Werz O, Szellas D, Steinhilber D, Rådmark O (2002) Arachidonic acid promotes phosphorylation of 5-lipoxygenase at Ser-271 by MAPK-activated protein kinase 2 (MK2). J Biol Chem 277:14793–14800

    CAS  PubMed  Google Scholar 

  15. Coffey MJ, Phare SM, Peters-Golden M (2001) Peroxynitrite-induced nitrotyrosination of proteins is blocked by direct 5-lipoxygenase inhibitor zileuton. J Pharmacol Exp Ther 299:198–203

    CAS  PubMed  Google Scholar 

  16. Berger W, Chandt MTMD, Cairns CB (2007) Zileuton: clinical implications of 5-Lipoxygenase inhibition in severe airway disease. Int J Clin Pract 61:663–676

    CAS  PubMed  Google Scholar 

  17. Drakatos P, Lykouras D, Sampsonas F, Karkoulias K, Spiropoulos K (2009) Targeting leukotrienes for the treatment of COPD? Inflamm Allergy Drug Targets 8:297–306

    CAS  PubMed  Google Scholar 

  18. Houck JC, Clagett J (2014) Small peptides and methods for treatment of chronic obstructive pulmonary disease. The United States patent application US 14/109,723

  19. Knapp H (1990) Reduced allergic-induced nasal congestion and leukotriene synthesis with an orally 5-lipoxygenase inhibitor. N Engl J Med 323:1745–1748

    CAS  PubMed  Google Scholar 

  20. Ravikumar R (2005) Case series of two anosmic patients with chronic hyperplastic sinusitis with nasal polyposis, who experienced sustained restoration of smell and notable reduction of polyp tissue within nose and maxillary sinus using zileuton. J Allergy Clin Immunol 115:S201

    Google Scholar 

  21. Mastalerz L, Sanak M, Gawlewicz A, Gielicz A, Faber J, Szczeklik A (2006) Different eicosanoid profile of the hypersensitivity reactions triggered by aspirin and celecoxib in a patient with sinusitis, asthma, and urticaria. J Allergy Clin Immunol 118:957–958

    PubMed  Google Scholar 

  22. Weinblatt ME, Kremer JM, Coblyn JS, Helfgott S, Maier AL, Petrillo G, Henson B, Rubin P, Sperling R (1992) Zileuton, a 5-lipoxygenase inhibitor in rheumatoid arthritis. J Rheumatol 19:1537–1541

    CAS  PubMed  Google Scholar 

  23. Mlathew R, Gucciardi E, Demelo M, Bondy S (2008) Profiles of smokers and non-smokers with diabetes attending diabetes education centres. Can J Diabetes 32:314

    Google Scholar 

  24. You D, Lyn-Cook LE Jr, Gatti DM, Bell N, Mayeux PR, James LP, Mattes WB, Larson GJ, Harrill AH (2020) Nitrosative stress and lipid homeostasis as a mechanism for zileuton hepatotoxicity and resistance in genetically sensitive mice. Toxicol Sci 17:220–235

    Google Scholar 

  25. Singh VP, Patil CS, Kulkarni SK (2004) Effect of 5-lipoxygenase inhibition on events associated with inflammatory bowel disease in rats. Indian J Exp Biol 42:667–673

    CAS  PubMed  Google Scholar 

  26. Reynolds PD, Hunter JO (1993) Pharmacotherapy of inflammatory Bowel disease. Digest Dis 11(6):334–342

  27. Spector S, Tan RA (1998) Antileukotrienes in chronic urticaria [Letter]. J Allergy Clin Immunol 101:572

    CAS  PubMed  Google Scholar 

  28. Sorkness CA (2012) The use of 5-lipoxygenase inhibitors and leukotriene receptor antagonists in the treatment of chronic asthma. Pharmacotherapy 17:50S–54S

    Google Scholar 

  29. Cohen P (2002) The origins of protein phosphorylation. Nat Cell Biol 4:E127

    CAS  PubMed  Google Scholar 

  30. Bitto A, Giuliani D, Pallio G, Irrera N, Vandini E, Canalini F, Zaffe D, Ottani A, Minutoli L, Rinaldi MJIR (2017) Effects of COX1-2/5-LOX blockade in Alzheimer transgenic 3xTg-AD mice. Inflamm Res 66:389–398

    CAS  PubMed  Google Scholar 

  31. Wang Y, Sherchan P, Huang L, Akyol O, McBride DW, Zhang JH (2017) Naja sputatrix venom preconditioning attenuates neuroinflammation in a rat model of surgical brain injury via PLA2/5-LOX/LTB4 cascade activation. Sci Rep 7(1):1–2

    PubMed  PubMed Central  Google Scholar 

  32. Uz T, Dwivedi Y, Savani PD, Impagnatiello F, Pandey G, Manev H (1999) Glucocorticoids stimulate inflammatory 5-lipoxygenase gene expression and protein translocation in the brain. J Neurochem 73:693–699

    CAS  PubMed  Google Scholar 

  33. Ohtsuki T, Matsumoto M, Hayashi Y, Yamamoto K, Kitagawa K, Ogawa S, Yamamoto S, Kamada T (1995) Reperfusion induces 5-lipoxygenase translocation and leukotriene C4 production in ischemic brain. Am J Physiol Heart Circulatory Physiol 268:H1249–H1257

    CAS  Google Scholar 

  34. Czapski GA, Czubowicz K, Strosznajder JB, Strosznajder RPJNr (2016) The lipoxygenases: their regulation and implication in Alzheimer’s disease. Neurochem Res 41:243–257

    CAS  PubMed  Google Scholar 

  35. Jassam YN, Izzy S, Whalen M, McGavern DB, El Khoury J (2017) Neuroimmunology of traumatic brain injury: time for a paradigm shift. Neuron 95:1246–1265

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Tu X-k, Yang W-z, Wang C-h, Shi S-s, Zhang Y-l, Chen C-m, Yang Y-k, Jin C-d, Wen SJI (2010) Zileuton reduces inflammatory reaction and brain damage following permanent cerebral ischemia in rats. Inflammation 33:344–352

    CAS  PubMed  Google Scholar 

  37. Chinnici CM, Yao Y, Pratico D (2007) The 5-lipoxygenase enzymatic pathway in the mouse brain: young versus old. Neurobiol Aging 28:1457–1462

    CAS  PubMed  Google Scholar 

  38. Won JS, Im YB, Khan M, Singh AK, Singh I (2005) Involvement of phospholipase A2 and lipoxygenase in lipopolysaccharide-induced inducible nitric oxide synthase expression in glial cells. Glia 51:13–21

    PubMed  Google Scholar 

  39. Garry P, Ezra M, Rowland M, Westbrook J, Pattinson K (2015) The role of the nitric oxide pathway in brain injury and its treatment—from bench to bedside. Exp Neurol 263:235–243

    CAS  PubMed  Google Scholar 

  40. Iqbal K, Liu F, Gong C-X, Grundke-Iqbal I (2010) Tau in Alzheimer disease and related tauopathies. Curr Alzheimer Res 7:656–664

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Holtzman DM, Morris JC, Goate AM (2011) Alzheimer’s disease: the challenge of the second century. Sci Trans Med 3:77sr71–77sr71

    Google Scholar 

  42. Morales I, Jiménez JM, Mancilla M, Maccioni RB (2013) Tau oligomers and fibrils induce activation of microglial cells. J Alzheimer's Disease 37:849–856

    CAS  Google Scholar 

  43. Jo W, Law A, Chung S (2014) The neglected co-star in the dementia drama: the putative roles of astrocytes in the pathogeneses of major neurocognitive disorders. Mol Psychiatry 19:159

    CAS  PubMed  Google Scholar 

  44. Wright AL, Zinn R, Hohensinn B, Konen LM, Beynon SB, Tan RP, Clark IA, Abdipranoto A, Vissel B (2013) Neuroinflammation and neuronal loss precede Aβ plaque deposition in the hAPP-J20 mouse model of Alzheimer’s disease. PLoS One 8:e59586

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Van Eldik LJ, Carrillo MC, Cole PE, Feuerbach D, Greenberg BD, Hendrix JA, Kennedy M, Kozauer N, Margolin RA, Molinuevo JL (2016) The roles of inflammation and immune mechanisms in Alzheimer's disease. Alzheimer's Dementia Transl Res Clin Interventions 2:99–109

    Google Scholar 

  46. Chu J, Praticò DJBRB (2016) The 5-Lipoxygenase as modulator of Alzheimer’s γ-secretase and therapeutic target. Brain Res Bull 126:207–212

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Di Francesco A, Arosio B, Gussago C, Dainese E, Mari D, D'Addario C, Maccarrone MJJoAsD (2013) Involvement of 5-lipoxygenase in Alzheimer's disease: a role for DNA methylation. J Alzheimer's Disease 37:3–8

    Google Scholar 

  48. Lai Je HuM, Wang H, Hu M, Long Y, Miao M-x, Li J-c, Wang X-b, Kong L-y, Hong H (2014) Montelukast targeting the cysteinyl leukotriene receptor 1 ameliorates Aβ1-42-induced memory impairment and neuroinflammatory and apoptotic responses in mice. Neuropharmacology 79:707–714

    Google Scholar 

  49. Giannopoulos PF, Chu J, Joshi YB, Sperow M, Li J, Kirby LG, Praticò D (2014) Gene knockout of 5-lipoxygenase rescues synaptic dysfunction and improves memory in the triple-transgenic model of Alzheimer's disease. Mol Psychiatry 19:511

    CAS  PubMed  Google Scholar 

  50. Firuzi O, Zhuo J, Chinnici CM, Wisniewski T, Praticò D (2008) 5-Lipoxygenase gene disruption reduces amyloid-β pathology in a mouse model of Alzheimer’s disease. FASEB J 22:1169–1178

    CAS  PubMed  Google Scholar 

  51. Ikonomovic MD, Abrahamson EE, Uz T, Manev H, DeKosky ST (2008) Increased 5-lipoxygenase immunoreactivity in the hippocampus of patients with Alzheimer's disease. J Histochem Cytochem 56:1065–1073

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Chu J, Praticò D (2016) The 5-Lipoxygenase as modulator of Alzheimer’s γ-secretase and therapeutic target. Brain Res Bull 126:207–212

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Chu J, Giannopoulos PF, Ceballos-Diaz C, Golde TE, Praticò D (2012) 5-Lipoxygenase gene transfer worsens memory, amyloid, and tau brain pathologies in a mouse model of alzheimer disease. Ann Neurol 72:442–454

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Joshi YB, Giannopoulos PF, Chu J, Praticò D (2014) Modulation of LPS-induced memory insult, γ-secretase and neuroinflammation in 3xTg mice by 5-Lipoxygenase. Neurobiol Aging 35:1024

    CAS  PubMed  Google Scholar 

  55. Chu J, Praticò D (2011) 5-lipoxygenase as an endogenous modulator of amyloid beta formation in vivo. Ann Neurol 69:34–46

    CAS  PubMed  Google Scholar 

  56. Chu J, Praticò D (2011) Pharmacologic blockade of 5-lipoxygenase improves the amyloidotic phenotype of an Alzheimer's disease transgenic mouse model: involvement of γ-secretase. Am J Pathol 178:1762–1769

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Maas AI, Stocchetti N, Bullock R (2008) Moderate and severe traumatic brain injury in adults. Lancet Neurol 7:728–741

    PubMed  Google Scholar 

  58. Dorsett CR, McGuire JL, DePasquale EA, Gardner AE, Floyd CL, McCullumsmith RE (2017) Glutamate neurotransmission in rodent models of traumatic brain injury. J Neurotrauma 34:263–272

    PubMed  PubMed Central  Google Scholar 

  59. Xiong Y, Mahmood A, Chopp M (2013) Animal models of traumatic brain injury. Nat Rev Neurosci 14:128

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang L, Zhang WP, Hu H, Wang ML, Sheng WW, Yao HT, Ding W, Chen Z, Wei EQ (2006) Expression patterns of 5-lipoxygenase in human brain with traumatic injury and astrocytoma. Neuropathology 26:99–106

    PubMed  Google Scholar 

  61. Hang CH, Shi J-X, Li J-S, Wu W, Yin HX (2005) Concomitant upregulation of nuclear factor-kB activity, proinflammatory cytokines and ICAM-1 in the injured brain after cortical contusion trauma in a rat model. Neurol India 53:312

    PubMed  Google Scholar 

  62. Manev H, Uz T, Manev R, Zhang ZJAotNYAoS (2001) Neurogenesis and Neuroprotection in the Adult Brain: A Putative Role for 5-Lipoxygenase? Ann NY Acad Sci 939:45–51

    CAS  PubMed  Google Scholar 

  63. Scorza FA, Cysneiros RM, Cavalheiro EA, Arida RM (2007) Progress in neuro-psychopharmacology and biological psychiatry Re.: Omega-3 fatty acids and sudden unexpected death in epilepsy: What does the evidence tell us? Progress in neuro-psychopharmacology & biological psychiatry 31:972–973 author reply 974

    Google Scholar 

  64. Manev H, Chen H, Dzitoyeva S, Manev RJ (2011) Cyclooxygenases and 5-lipoxygenase in Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry 35:315–319

    CAS  PubMed  Google Scholar 

  65. Martini AC, Forner S, Bento AF, Rae GAJBri (2014) Neuroprotective effects of lipoxin A4 in central nervous system pathologies. 2014

  66. Sobrado M, Pereira MP, Ballesteros I, Hurtado O, Fernández-López D, Pradillo JM, Caso JR, Vivancos J, Nombela F, Serena J (2009) Synthesis of lipoxin A4 by 5-lipoxygenase mediates PPARγ-dependent, neuroprotective effects of rosiglitazone in experimental stroke. J Neurosci 29:3875–3884

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Peters-Golden M, Brock T (2003) 5-lipoxygenase and FLAP. Prostaglandins Leukot Essent Fatty Acids 69:99–109

    CAS  PubMed  Google Scholar 

  68. Gilbert NC, Bartlett SG, Waight MT, Neau DB, Boeglin WE, Brash AR, Newcomer ME (2011) The structure of human 5-lipoxygenase. Science 331:217–219

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Hemak J, Gale D, Brock TG (2002) Structural characterization of the catalytic domain of the human 5-lipoxygenase enzyme. Mol Model Ann 8:102–112

    CAS  Google Scholar 

  70. Lepley RA, Fitzpatrick F (1994) 5-Lipoxygenase contains a functional Src homology 3-binding motif that interacts with the Src homology 3 domain of Grb2 and cytoskeletal proteins. J Biol Chem 269:24163–24168

    CAS  PubMed  Google Scholar 

  71. Hammarberg T, Provost P, Persson B, Rådmark O (2000) The N-terminal domain of 5-lipoxygenase binds calcium and mediates calcium stimulation of enzyme activity. J Biol Chem 275:38787–38793

    CAS  PubMed  Google Scholar 

  72. Chen X-S, Funk CD (2001) The N-terminal “β-barrel” domain of 5-lipoxygenase is essential for nuclear membrane translocation. J Biol Chem 276:811–818

    CAS  PubMed  Google Scholar 

  73. Ball A-K, Beilstein K, Wittmann S, Sürün D, Saul MJ, Schnütgen F, Flamand N, Capelo R, Kahnt AS, Frey H (2017) Characterization and cellular localization of human 5-lipoxygenase and its protein isoforms 5-LOΔ13, 5-LOΔ4 and 5-LOp12. Biochimica et Biophysica Acta (BBA) Mol Cell Biol Lipids 1862:561–571

    CAS  Google Scholar 

  74. Ochs MJ, Suess B, Steinhilber D (2014) 5-Lipoxygenase m RNA and protein isoforms. Basic Clin Pharmacol Toxicol 114:78–82

    CAS  PubMed  Google Scholar 

  75. Rådmark O, Samuelsson B (2005) Regulation of 5-lipoxygenase enzyme activity. Biochem Biophys Res Commun 338:102–110

    PubMed  Google Scholar 

  76. Peters-Golden M, Mcnish RW (1993) Redistribution of 5-lipoxygenase and cytosolic phospholipase A2 to the nuclear fraction upon macrophage activation. Biochem Biophys Res Commun 196:147–153

    CAS  PubMed  Google Scholar 

  77. Pouliot M, Mcdonald PP, Krump E, Mancini JA, Mccoll SR, Weech PK, Borgeat P (1996) Colocalization of cytosolic phospholipase A2, 5-lipoxygenase, and 5-lipoxygenase-activating protein at the nuclear membrane of A23187-stimulated human neutrophils. Eur J Biochem 238:250–258

    CAS  PubMed  Google Scholar 

  78. Luo M, Jones SM, Peters-Golden M, Brock TG (2003) Nuclear localization of 5-lipoxygenase as a determinant of leukotriene B4 synthetic capacity. Proc Natl Acad Sci USA 100:12165–12170

    CAS  PubMed  Google Scholar 

  79. Martelpelletier J, Lajeunesse D, Reboul P, Pelletier JP (2003) Therapeutic role of dual inhibitors of 5-LOX and COX, selective and non-selective non-steroidal anti-inflammatory drugs. Ann Rheum Dis 62:501–509

    CAS  Google Scholar 

  80. Samuelsson B, Dahlen SE, Lindgren JA, Rouzer CA, Serhan CN (1987) Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science 237:1171

    CAS  PubMed  Google Scholar 

  81. Byrum RS, Goulet JL, Snouwaert JN, Griffiths RJ, Koller BH (1999) Determination of the contribution of cysteinyl leukotrienes and leukotriene B4 in acute inflammatory responses using 5-lipoxygenase-and leukotriene A4 hydrolase-deficient mice. J Immunol 163:6810–6819

    CAS  PubMed  Google Scholar 

  82. Samuelsson B (1983) Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation. Springer, New York

    Google Scholar 

  83. Wilborn J, Bailie M, Coffey M, Burdick M, Strieter R, Petersgolden M (1996) Constitutive activation of 5-lipoxygenase in the lungs of patients with idiopathic pulmonary fibrosis. J Clin Invest 97:1827–1836

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Dwyer JH, Allayee H, Dwyer KM (2004) Arachidonate 5-lipoxygenase promoter genotype, dietary arachidonic acid, and atherosclerosis. N Engl J Med 39:29

    Google Scholar 

  85. Drazen JM, Lilly CM, Sperling R, Rubin P, Israel E (1994) Role of cysteinyl leukotrienes in spontaneous asthmatic responses. Adv Prostaglandin Thromboxane Leukot Res 22:251–262

    CAS  PubMed  Google Scholar 

  86. Spanbroek R, Hildner M, Steinhilber D, Fusenig N, Yoneda K, Rådmark O, Samuelsson B, Habenicht AJ (2000) 5-lipoxygenase expression in dendritic cells generated from CD34(+) hematopoietic progenitors and in lymphoid organs. Blood 96:3857–3865

    CAS  PubMed  Google Scholar 

  87. Robbiani DF, Finch RA, Jäger D, Muller WA, Sartorelli AC, Randolph GJ (2000) The leukotriene C(4) transporter MRP1 regulates CCL19 (MIP-3beta, ELC)-dependent mobilization of dendritic cells to lymph nodes. Cell 103:757

    CAS  PubMed  Google Scholar 

  88. Birnbaum Y, Ye Y, Lin Y, Freeberg SY, Nishi SP, Martinez JD, Huang MH, Uretsky BF, Perez-Polo JR (2006) Augmentation of myocardial production of 15-epi-lipoxin-a4 by pioglitazone and atorvastatin in the rat. Circulation 114:929–935

    CAS  PubMed  Google Scholar 

  89. Newcomer ME, Gilbert NC (2010) Location, location, location: compartmentalization of early events in leukotriene biosynthesis. J Biol Chem 285:25109–25114

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Mandal AK, Jones PB, Bair AM, Christmas P, Miller D, T-tD Y, Wisniewski D, Menke J, Evans JF, Hyman BT (2008) The nuclear membrane organization of leukotriene synthesis. Proc Natl Acad Sci 105:20434–20439

    CAS  PubMed  Google Scholar 

  91. Bair AM, Turman MV, Vaine CA, Panettieri RA, Soberman RJ (2012) The nuclear membrane leukotriene synthetic complex is a signal integrator and transducer. Mol Biol Cell 23:4456–4464

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Woods JW, Evans JF, Ethier D, Scott S, Vickers PJ, Hearn L, Heibein JA, Charleson S, Singer II (1993) 5-lipoxygenase and 5-lipoxygenase-activating protein are localized in the nuclear envelope of activated human leukocytes. J Exp Med 178:1935

    CAS  PubMed  Google Scholar 

  93. Luo M, Jones SM, Petersgolden M, Brock TG (2003) Nuclear localization of 5-lipoxygenase as a determinant of leukotriene B4 synthetic capacity. Proc Natl Acad Sci USA 100:12165–12170

    CAS  PubMed  Google Scholar 

  94. Chen X-S, Naumann TA, Kurre U, Jenkins NA, Copeland NG, Funk CD (1995) cDNA cloning, expression, mutagenesis, intracellular localization, and gene chromosomal assignment of mouse 5-lipoxygenase. J Biol Chem 270:17993–17999

    CAS  PubMed  Google Scholar 

  95. Brock TG, Anderson JA, Fries FP, Peters-Golden M, Sporn PH (1999) Decreased leukotriene C4 synthesis accompanies adherence-dependent nuclear import of 5-lipoxygenase in human blood eosinophils. J Immunol 162:1669–1676

    CAS  PubMed  Google Scholar 

  96. Flamand N, Lefebvre J, Surette ME, Picard S, Borgeat P (2006) Arachidonic acid regulates the translocation of 5-lipoxygenase to the nuclear membranes in human neutrophils. J Biol Chem 281:129–136

    CAS  PubMed  Google Scholar 

  97. Jones SM, Luo M, Healy AM, Peters-Golden M, Brock TG (2002) Structural and functional criteria reveal a new nuclear import sequence on the 5-lipoxygenase protein. J Biol Chem 277:38550–38556

    CAS  PubMed  Google Scholar 

  98. Jones SM, Luo M, Peters-Golden M, Brock TG (2003) Identification of two novel nuclear import sequences on the 5-lipoxygenase protein. J Biol Chem 278:10257

    CAS  PubMed  Google Scholar 

  99. Hanaka H, Shimizu T, Izumi T (2002) Nuclear-localization-signal-dependent and nuclear-export-signal-dependent mechanisms determine the localization of 5-lipoxygenase. Biochem J 361:505

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Humphrey SJ, James DE, Mann M (2015) Protein phosphorylation: a major switch mechanism for metabolic regulation. Trends Endocrinol Metab 26:676–687

    CAS  PubMed  Google Scholar 

  101. Häfner A-K, Kahnt AS, Steinhilber D (2019) Beyond leukotriene formation–the noncanonical functions of 5-lipoxygenase. Prostaglandins Other Lipid Mediators 142:24–32

    PubMed  Google Scholar 

  102. Allain EP, Boudreau LH, Flamand N, Surette ME (2015) The intracellular localisation and phosphorylation profile of the human 5-lipoxygenase Δ13 isoform differs from that of its full length counterpart. PLoS One 10:e0132607

    PubMed  PubMed Central  Google Scholar 

  103. Werz O (2002) 5-lipoxygenase: cellular biology and molecular pharmacology. Curr Drug Targets Inflamm Allergy 1:23

    CAS  PubMed  Google Scholar 

  104. Werz O, Klemm J, Samuelsson B, Rådmark O (2000) 5-lipoxygenase is phosphorylated by p38 kinase-dependent MAPKAP kinases. Proc Natl Acad Sci 97:5261–5266

    CAS  PubMed  Google Scholar 

  105. Rouse J, Cohen P, Trigon S, Morange M, Alonsollamazares A, Zamanillo D, Hunt T, Nebreda AR (1994) A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell Cell 78:1027

    CAS  PubMed  Google Scholar 

  106. Kondoh K, Terasawa K, Morimoto H, Nishida E (2006) Regulation of nuclear translocation of extracellular signal-regulated kinase 5 by active nuclear import and export mechanisms. Mol Cell Biol 26:1679–1690

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Flamand N, Luo M, Petersgolden M, Brock TG (2009) Phosphorylation of Serine 271 on 5-Lipoxygenase and Its Role in Nuclear Export. J Biol Chem 284:306

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Brock TG, Mcnish RW, Bailie MB, Peters-Golden M (1997) Rapid import of cytosolic 5-lipoxygenase into the nucleus of neutrophils after in vivo recruitment and in vitro adherence. J Biol Chem 272:8276–8280

    CAS  PubMed  Google Scholar 

  109. Covin RB, Brock TG, Bailie MB, Petersgolden M (1998) Altered expression and localization of 5-lipoxygenase accompany macrophage differentiation in the lung. Am J Physiol 275:303–310

    Google Scholar 

  110. Werz O, Steinhilber D (2006) Therapeutic options for 5-lipoxygenase inhibitors. Pharmacol Ther 112:701–718

    CAS  PubMed  Google Scholar 

  111. Ham EA, Soderman DD, Zanetti ME, Dougherty HW, Mccauley E, Kuehl FA (1983) Inhibition by prostaglandins of leukotriene B4 release from activated neutrophils. Proc Natl Acad Sci 80:4349

    CAS  PubMed  Google Scholar 

  112. Krump E, Picard S, Mancini J, Borgeat P (1997) Suppression of leukotriene B4 biosynthesis by endogenous adenosine in ligand-activated human neutrophils. J Exp Med 186:1401–1406

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Surette ME, Krump E, Picard S, Borgeat P (1999) Activation of leukotriene synthesis in human neutrophils by exogenous arachidonic acid: inhibition by adenosine A(2a) receptor agonists and crucial role of autocrine activation by leukotriene B(4). Mol Pharmacol 56:1055–1062

    CAS  PubMed  Google Scholar 

  114. Shichijo M, Inagaki N, Kimata M, Serizawa I, Saito H, Nagai H (1999) Role of cyclic 3',5'-adenosine monophosphate in the regulation of chemical mediator release and cytokine production from cultured human mast cells. J Allergy Clin Immunol 103:S421–428

    CAS  PubMed  Google Scholar 

  115. Myou S, Leff AR, Myo S, Boetticher E, Meliton AY, Lambertino AT, Liu J, Xu C, Munoz NM, Zhu X (2003) Activation of group IV cytosolic phospholipase A2 in human eosinophils by phosphoinositide 3-kinase through a mitogen-activated protein kinase-independent pathway. J Immunol 171:4399–4405

    CAS  PubMed  Google Scholar 

  116. Luo M, Jones SM, Phare SM, Coffey MJ, Peters-Golden M, Brock TG (2004) Protein kinase A inhibits leukotriene synthesis by phosphorylation of 5-lipoxygenase on serine 523. J Biol Chem 279:41512–41520

    CAS  PubMed  Google Scholar 

  117. Aronoff DM, Canetti C, Peters-Golden M (2004) Prostaglandin E2 inhibits alveolar macrophage phagocytosis through an E-prostanoid 2 receptor-mediated increase in intracellular cyclic AMP. J Immunol 173:559–565

    CAS  PubMed  Google Scholar 

  118. Harizi H, Grosset C, Gualde N (2003) Prostaglandin E2 modulates dendritic cell function via EP2 and EP4 receptor subtypes. J Leukoc Biol 73:756–763

    CAS  PubMed  Google Scholar 

  119. Birnbaum Y, Ye Y, Lin Y, Freeberg SY, Huang MH, Perez-Polo JR, Uretsky BF (2007) Aspirin augments 15-epi-lipoxin A4 production by lipopolysaccharide, but blocks the pioglitazone and atorvastatin induction of 15-epi-lipoxin A4 in the rat heart. Prostaglandins Other Lipid Mediat 83:89–98

    CAS  PubMed  Google Scholar 

  120. Kim SF, Huri DA, Snyder SH (2005) Inducible nitric oxide synthase binds, S-nitrosylates, and activates cyclooxygenase-2. Science 310:1966–1970

    CAS  PubMed  Google Scholar 

  121. Ye Y, Lin Y, Perez-Polo JR, Uretsky BF, Ye Z, Tieu BC, Birnbaum Y (2008) Phosphorylation of 5-lipoxygenase at ser523 by protein kinase A determines whether pioglitazone and atorvastatin induce proinflammatory leukotriene B4 or anti-inflammatory 15-epi-lipoxin a4 production. J Immunol 181:3515–3523

    CAS  PubMed  Google Scholar 

  122. Mahshid Y, Markoutsa S, Dincbas-Renqvist V, Sürün D, Christensson B, Sander B, Björkholm M, Sorg BL, Rådmark O, Claesson H-E (2015) Phosphorylation of serine 523 on 5-lipoxygenase in human B lymphocytes. Prostaglandins Leukot Essent Fatty Acids 100:33–40

    CAS  PubMed  Google Scholar 

  123. Luo M, Jones SM, Flamand N, Aronoff DM, Petersgolden M, Brock TG (2005) Phosphorylation by protein kinase a inhibits nuclear import of 5-lipoxygenase. J Biol Chem 280:40609–40616

    CAS  PubMed  Google Scholar 

  124. Pemberton LF, Paschal BM (2005) Mechanisms of receptor-mediated nuclear import and nuclear export. Traffic 6:187

    CAS  PubMed  Google Scholar 

  125. Brock TG, Anderson JA, Fries FP, Petersgolden M, Sporn PH (1999) Decreased leukotriene C4 synthesis accompanies adherence-dependent nuclear import of 5-lipoxygenase in human blood eosinophils. J Immunol 162:1669–1676

    CAS  PubMed  Google Scholar 

  126. Cowburn AS, Holgate ST, Sampson AP (1999) IL-5 increases expression of 5-lipoxygenase-activating protein and translocates 5-lipoxygenase to the nucleus in human blood eosinophils. J Immunol 163:456–465

    CAS  PubMed  Google Scholar 

  127. Harris MB, Blackstone MA, Sood SG, Li C, Goolsby JM, Venema VJ, Kemp BE, Venema RC (2004) Acute activation and phosphorylation of endothelial nitric oxide synthase by HMG-CoA reductase inhibitors. Am J Physiol Heart Circulatory Physiol 287:H560

    CAS  Google Scholar 

  128. Shah DI, Singh M (2009) Activation of protein kinase A improves vascular endothelial dysfunction. Endothelium 13:267–277

    Google Scholar 

  129. Manickavasagam S, Ye Y, Lin Y, Perez-Polo RJ, Huang MH, Lui CY, Hughes MG, Mcadoo DJ, Uretsky BF, Birnbaum Y (2007) The cardioprotective effect of a statin and cilostazol combination: relationship to Akt and endothelial nitric oxide synthase activation. Cardiovasc Drugs Ther 21:321–330

    CAS  PubMed  Google Scholar 

  130. Birnbaum Y, Ye Y, Rosanio S, Tavackoli S, Hu ZY, Schwarz ER, Uretsky BF (2005) Prostaglandins mediate the cardioprotective effects of atorvastatin against ischemia–reperfusion injury. Cardiovasc Res 65:345–355

    CAS  PubMed  Google Scholar 

  131. Atar S, Ye Y, Lin Y, Freeberg SY, Nishi SP, Rosanio S, Huang MH, Uretsky BF, Perezpolo JR, Birnbaum Y (2006) Atorvastatin-induced cardioprotection is mediated by increasing inducible nitric oxide synthase and consequent S-nitrosylation of cyclooxygenase-2. Am J Physiol 290:H1960–1968

    CAS  Google Scholar 

  132. Ye Y, Lin Y, Atar S, Huang MH, Perezpolo JR, Uretsky BF, Birnbaum Y (2006) Myocardial protection by pioglitazone, atorvastatin, and their combination: mechanisms and possible interactions. Am J Physiol Heart Circulatory Physiol 291:H1158

    CAS  Google Scholar 

  133. Boudreau LH, Bertin J, Robichaud PP, Laflamme M, Ouellette RJ, Flamand N, Surette ME (2011) Novel 5-lipoxygenase isoforms affect the biosynthesis of 5-lipoxygenase products. FASEB J 25:1097–1105

    CAS  PubMed  Google Scholar 

  134. Hammarberg T, Kuprin S, Rådmark O, Holmgren A (2001) EPR investigation of the active site of recombinant human 5-lipoxygenase: inhibition by selenide. Biochemistry 40:6371–6378

    CAS  PubMed  Google Scholar 

  135. Werz O, Steinhilber D (2005) Development of 5-lipoxygenase inhibitors—lessons from cellular enzyme regulation. Biochem Pharmacol 70:327–333

    CAS  PubMed  Google Scholar 

  136. Claesson HE, Dahlén SE (1999) Asthma and leukotrienes: antileukotrienes as novel anti-asthmatic drugs. J Intern Med 245:205–227

    CAS  PubMed  Google Scholar 

  137. Werz O, Szellas D, Henseler M, Steinhilber D (1998) Nonredox 5-lipoxygenase inhibitors require glutathione peroxidase for efficient inhibition of 5-lipoxygenase activity. Mol Pharmacol 54:445–451

    CAS  PubMed  Google Scholar 

  138. Crawley GC, Dowell RI, Edwards PN, Foster SJ, McMillan RM, Walker ER, Waterson D, Bird TGC, Bruneau P, Girodeau JM (1992) Methoxytetrahydropyrans. A new series of selective and orally potent 5-lipoxygenase inhibitors. J Med Chem 35:2600–2609

    CAS  PubMed  Google Scholar 

  139. Dahlén S-E, Hedqvist P, Hammarström S, Samuelsson B (1980) Leukotrienes are potent constrictors of human bronchi. Nature 288:484

    PubMed  Google Scholar 

Download references

Funding

This study was supported by Scientific research project of Guangdong administration of traditional Chinese medicine Fund in China (20191087) and College Students’ Innovation and Entrepreneurship Projects (CX17038, CX18036, CX20139).

Author information

Authors and Affiliations

Authors

Contributions

YW is responsible for the conception design and organizational structure for the whole paper. ZH and DT retrieved and organized the literature, and amended the article; JX drew most of the figures, and drafted the article; The other people took part in the literature collection and paper revision. All authors have contributed significantly, and all authors have approved the final version of the manuscript.

Corresponding author

Correspondence to Yuechun Wang.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Z., Tao, D., Xiong, J. et al. Phosphorylation of 5-LOX: The Potential Set-point of Inflammation. Neurochem Res 45, 2245–2257 (2020). https://doi.org/10.1007/s11064-020-03090-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-03090-3

Keywords

Navigation