Skip to main content

Advertisement

Log in

Antioxidants and Neuron-Astrocyte Interplay in Brain Physiology: Melatonin, a Neighbor to Rely on

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

This manuscript is a review focused onto the role of astrocytes in the protection of neurons against oxidative stress and how melatonin can contribute to the maintenance of brain homeostasis. The first part of the review is dedicated to the dependence of neurons on astrocytes by terms of survival under oxidative stress conditions. Additionally, the effects of melatonin against oxidative stress in the brain and its putative role in the protection against diseases affecting the brain are highlighted. The effects of melatonin on the physiology of neurons and astrocytes also are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Martínez Leo EE, Segura Campos MR (2019) Systemic oxidative stress: a key point in neurodegeneration: a review. J Nutr Health Aging 23(8):694–699. https://doi.org/10.1007/s12603-019-1240-8

    Article  PubMed  Google Scholar 

  2. Barbagallo M, Marotta F, Dominguez LJ (2015) Oxidative stress in patients with Alzheimer’s disease: effect of extracts of fermented papaya powder. Mediators Inflamm 2015:624801. https://doi.org/10.1155/2015/624801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sanchez-Perez Y, Soto-Reyes E, Garcia-Cuellar CM, Cacho-Diaz B, Santamaria A, Rangel-Lopez E (2017) Role of epigenetics and oxidative stress in gliomagenesis. CNS Neurol Disord: Drug Targets 16:1090–1098. https://doi.org/10.2174/1871527317666180110124645

    Article  CAS  Google Scholar 

  4. Schmidlin CJ, Dodson MB, Madhavan L, Zhang DD (2019) Redox regulation by NRF2 in aging and disease. Free Radic Biol Med 134:702–707. https://doi.org/10.1016/j.freeradbiomed.2019.01.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Radogna F, Nuccitelli S, Mengoni F, Ghibelli L (2009) Neuroprotection by melatonin on astrocytoma cell death. Ann N Y Acad Sci 1171:509–513. https://doi.org/10.1111/j.1749-6632.2009.04900.x

    Article  CAS  PubMed  Google Scholar 

  6. Skaper SD, Ancona B, Facci L, Franceschini D, Giusti P (1998) Melatonin prevents the delayed death of hippocampal neurons induced by enhanced excitatory neurotransmission and the nitridergic pathway. FASEB J 12:725–731

    CAS  PubMed  Google Scholar 

  7. Limón-Pacheco JH, Gonsebatt ME (2010) The glutathione system and its regulation by neurohormone melatonin in the central nervous system. Cent Nerv Syst Agents Med Chem 10:287–297

    PubMed  Google Scholar 

  8. Dringen R, Brandmann M, Hohnholt MC, Blumrich EM (2015) Glutathione-dependent detoxification processes in astrocytes. Neurochem Res 40:2570–2582. https://doi.org/10.1007/s11064-014-1481-1

    Article  CAS  PubMed  Google Scholar 

  9. Hillen AEJ, Burbach JPH, Hol EM (2018) Cell adhesion and matricellular support by astrocytes of the tripartite synapse. Prog Neurobiol 165–167:66–86. https://doi.org/10.1016/j.pneurobio.2018.02.002

    Article  CAS  PubMed  Google Scholar 

  10. Araque A, Parpura V, Sanzgiri RP, Haydon PG (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22:208–215

    CAS  PubMed  Google Scholar 

  11. Santello M, Calì C, Bezzi P (2012) Gliotransmission and the tripartite synapse. Adv Exp Med Biol 970:307–331. https://doi.org/10.1007/978-3-7091-0932-8_14

    Article  CAS  PubMed  Google Scholar 

  12. Araque A, Sanzgiri RP, Parpura V, Haydon PG (1998) Calcium elevation in astrocytes causes an NMDA receptor-dependent increase in the frequency of miniature synaptic currents in cultured hippocampal neurons. J Neurosci 18:6822–6829

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Martin ED, Fernández M, Perea G, Pascual O, Haydon PG, Araque A, Ceña V (2007) Adenosine released by astrocytes contributes to hypoxia-induced modulation of synaptic transmission. Glia 55:36–45

    PubMed  Google Scholar 

  14. Martineau M, Baux G, Mothet JP (2006) Gliotransmission at central glutamatergic synapses: d-serine on stage. J Physiol Paris 99:103–110

    CAS  PubMed  Google Scholar 

  15. Parpura V, Zorec R (2010) Gliotransmission: exocytotic release from astrocytes. Brain Res Rev 63:83–92. https://doi.org/10.1016/j.brainresrev.2009.11.008

    Article  CAS  PubMed  Google Scholar 

  16. Kaczor P, Rakus D, Mozrzymas JW (2015) Neuron-astrocyte interaction enhance GABAergic synaptic transmission in a manner dependent on key metabolic enzymes. Front Cell Neurosci 9:120. https://doi.org/10.3389/fncel.2015.00120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Araque A, Martín ED, Perea G, Arellano JI, Buño W (2002) Synaptically released acetylcholine evokes Ca2 + elevations in astrocytes in hippocampal slices. J Neurosci 22:2443–2450

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Juric DM, Miklic S, Carman-Krzan M (2006) Monoaminergic neuronal activity up-regulates BDNF synthesis in cultured neonatal rat astrocytes. Brain Res 1108(1):54–62

    CAS  PubMed  Google Scholar 

  19. Murai KK, Pasquale EB (2011) Eph receptors and ephrins in neuron-astrocyte communication at synapses. Glia 59:1567–1578. https://doi.org/10.1002/glia.21226

    Article  PubMed  Google Scholar 

  20. Kong L, Albano R, Madayag A, Raddatz N, Mantsch JR, Choi S, Lobner D, Baker DA (2016) Pituitary Adenylate cyclase-activating polypeptide orchestrates neuronal regulation of the astrocytic glutamate-releasing mechanism system xc (.). J Neurochem 137:384–393. https://doi.org/10.1111/jnc.13566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Beal MF (1992) Mechanisms of excitotoxicity in neurologic diseases. FASEB J 6:3338–3344

    CAS  PubMed  Google Scholar 

  22. Aschner M (2000) Neuron-astrocyte interactions: implications for cellular energetics and antioxidant levels. Neurotoxicology 21:1101–1107

    CAS  PubMed  Google Scholar 

  23. Al Awabdh S, Gupta-Agarwal S, Sheehan DF, Muir J, Norkett R, Twelvetrees AE, Griffin LD, Kittler JT (2016) Neuronal activity mediated regulation of glutamate transporter GLT-1 surface diffusion in rat astrocytes in dissociated and slice cultures. Glia 64:1252–1264. https://doi.org/10.1002/glia.22997

    Article  PubMed  PubMed Central  Google Scholar 

  24. Langeveld CH, Jongenelen CA, Schepens E, Stoof JC, Bast A, Drukarch B (1995) Cultured rat striatal and cortical astrocytes protect mesencephalic dopaminergic neurons against hydrogen peroxide toxicity independent of their effect on neuronal development. Neurosci Lett 192:13–16

    CAS  PubMed  Google Scholar 

  25. Sofroniew MV (2005) Reactive astrocytes in neural repair and protection. Neuroscientist 11:400–407

    CAS  PubMed  Google Scholar 

  26. Chen LW, Yung KL, Chan YS (2005) Reactive astrocytes as potential manipulation targets in novel cell replacement therapy of Parkinson’s disease. Curr Drug Targets 6:821–833

    CAS  PubMed  Google Scholar 

  27. Gleixner AM, Posimo JM, Pant DB, Henderson MP, Leak RK (2016) Astrocytes surviving severe stress can still protect neighboring neurons from proteotoxic injury. Mol Neurobiol 53:4939–4960. https://doi.org/10.1007/s12035-015-9427-4

    Article  CAS  PubMed  Google Scholar 

  28. Bruno V, Sureda FX, Storto M, Casabona G, Caruso A, Knopfel T, Kuhn R, Nicoletti F (1997) The neuroprotective activity of group-II metabotropic glutamate receptors requires new protein synthesis and involves a glial-neuronal signaling. J Neurosci 17:1891–1897

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Brown DR (1999) Neurons depend on astrocytes in a coculture system for protection from glutamate toxicity. Mol Cell Neurosci 13:379–389

    CAS  PubMed  Google Scholar 

  30. Imuta N, Hori O, Kitao Y, Tabata Y, Yoshimoto T, Matsuyama T, Ogawa S (2007) Hypoxia-mediated induction of heme oxygenase type I and carbon monoxide release from astrocytes protects nearby cerebral neurons from hypoxia-mediated apoptosis. Antioxid Redox Signal 9:543–552

    CAS  PubMed  Google Scholar 

  31. Lamigeon C, Bellier JP, Sacchettoni S, Rujano M, Jacquemont B (2001) Enhanced neuronal protection from oxidative stress by coculture with glutamic acid decarboxylase-expressing astrocytes. J Neurochem 77:598–606

    CAS  PubMed  Google Scholar 

  32. Decker H, Francisco SS, Mendes-de-Aguiar CB, Romão LF, Boeck CR, Trentin AG, Moura-Neto V, Tasca CI (2007) Guanine derivatives modulate extracellular matrix proteins organization and improve neuron-astrocyte co-culture. J Neurosci Res 85:1943–1951

    CAS  PubMed  Google Scholar 

  33. Druse MJ, Gillespie RA, Tajuddin NF, Rich M (2007) S100B-mediated protection against the pro-apoptotic effects of ethanol on fetal rhombencephalic neurons. Brain Res 1150:46–54

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Vega-Agapito V, Almeida A, Hatzoglou M, Bolaños JP (2002) Peroxynitrite stimulates l-arginine transport system y(+) in glial cells. A potential mechanism for replenishing neuronal L-arginine. J Biol Chem 277:29753–29759

    CAS  PubMed  Google Scholar 

  35. Niu H, Hinkle DA, Wise PM (1997) Dexamethasone regulates basic fibroblast growth factor, nerve growth factor and S100beta expression in cultured hippocampal astrocytes. Brain Res Mol Brain Res 51:97–105

    CAS  PubMed  Google Scholar 

  36. Zhang X, Zhou Z, Wang D, Li A, Yin Y, Gu X, Ding F, Zhen X, Zhou J (2009) Activation of phosphatidylinositol-linked D1-like receptor modulates FGF-2 expression in astrocytes via IP3-dependent Ca2 + signaling. J Neurosci 29:7766–7775. https://doi.org/10.1523/JNEUROSCI.0389-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cunningham LA, Su C (2002) Astrocyte delivery of glial cell line-derived neurotrophic factor in a mouse model of Parkinson’s disease. Exp Neurol 174:230–242

    CAS  PubMed  Google Scholar 

  38. Do Thi NA, Saillour P, Ferrero L, Dedieu JF, Mallet J, Paunio T (2004) Delivery of GDNF by an E1, E3/E4 deleted adenoviral vector and driven by a GFAP promoter prevents dopaminergic neuron degeneration in a rat model of Parkinson’s disease. Gene Ther 11:746–756

    CAS  PubMed  Google Scholar 

  39. Dhandapani KM, Hadman M, De Sevilla L, Wade MF, Mahesh VB, Brann DW (2003) Astrocyte protection of neurons: role of transforming growth factor-beta signaling via a c-Jun-AP-1 protective pathway. J Biol Chem 278:43329–43339

    CAS  PubMed  Google Scholar 

  40. Lin CH, Cheng FC, Lu YZ, Chu LF, Wang CH, Hsueh CM (2006) Protection of ischemic brain cells is dependent on astrocyte-derived growth factors and their receptors. Exp Neurol 201:225–233

    CAS  PubMed  Google Scholar 

  41. Yang D, Peng C, Li X, Fan X, Li L, Ming M, Chen S, Le W (2008) Pitx3-transfected astrocytes secrete brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor and protect dopamine neurons in mesencephalon cultures. J Neurosci Res 86:3393–3400. https://doi.org/10.1002/jnr.21774

    Article  CAS  PubMed  Google Scholar 

  42. Yang W, Shen Y, Chen Y, Chen L, Wang L, Wang H, Xu S, Fang S, Fu Y, Yu Y, Shen Y (2014) Mesencephalic astrocyte-derived neurotrophic factor prevents neuron loss via inhibiting ischemia-induced apoptosis. J Neurol Sci 344:129–138. https://doi.org/10.1016/j.jns.2014.06.042

    Article  CAS  PubMed  Google Scholar 

  43. Zhu Y, Chen X, Liu Z, Peng YP, Qiu YH (2015) Interleukin-10 protection against lipopolysaccharide-induced neuro-inflammation and neurotoxicity in ventral mesencephalic cultures. Int J Mol Sci 17(1):E25. https://doi.org/10.3390/ijms17010025

    Article  CAS  PubMed  Google Scholar 

  44. Sun F, Nguyen T, Jin X, Huang R, Chen Z, Cunningham RL, Singh M, Su C (2016) Pgrmc1/BDNF signaling plays a critical role in mediating glia-neuron cross talk. Endocrinology 157:2067–2079. https://doi.org/10.1210/en.2015-1610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ghouili I, Bahdoudi S, Morin F, Amri F, Hamdi Y, Coly PM, Walet-Balieu ML, Leprince J, Zekri S, Vaudry H, Vaudry D, Castel H, Amri M, Tonon MC, Masmoudi-Kouki O (2018) Endogenous expression of ODN-related peptides in astrocytes contributes to cell protection against oxidative stress: astrocyte-neuron crosstalk relevance for neuronal survival. Mol Neurobiol 55:4596–4611. https://doi.org/10.1007/s12035-017-0630-3

    Article  CAS  PubMed  Google Scholar 

  46. Pitt J, Wilcox KC, Tortelli V, Diniz LP, Oliveira MS, Dobbins C, Yu XW, Nandamuri S, Gomes FCA, DiNunno N, Viola KL, De Felice FG, Ferreira ST, Klein WL (2017) Neuroprotective astrocyte-derived insulin/insulin-like growth factor 1 stimulates endocytic processing and extracellular release of neuron-bound Aβ oligomers. Mol Biol Cell 28:2623–2636. https://doi.org/10.1091/mbc.E17-06-0416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. März P, Heese K, Dimitriades-Schmutz B, Rose-John S, Otten U (1999) Role of interleukin-6 and soluble IL-6 receptor in region-specific induction of astrocytic differentiation and neurotrophin expression. Glia 26:191–200

    PubMed  Google Scholar 

  48. Li XZ, Bai LM, Yang YP, Luo WF, Hu WD, Chen JP, Mao CJ, Liu CF (2009) Effects of IL-6 secreted from astrocytes on the survival of dopaminergic neurons in lipopolysaccharide-induced inflammation. Neurosci Res 65:252–258. https://doi.org/10.1016/j.neures.2009.07.007

    Article  CAS  PubMed  Google Scholar 

  49. Fujishita K, Ozawa T, Shibata K, Tanabe S, Sato Y, Hisamoto M, Okuda T, Koizumi S (2009) Grape seed extract acting on astrocytes reveals neuronal protection against oxidative stress via interleukin-6-mediated mechanisms. Cell Mol Neurobiol 29:1121–1129. https://doi.org/10.1007/s10571-009-9403-5

    Article  PubMed  Google Scholar 

  50. Sun L, Li Y, Jia X, Wang Q, Li Y, Hu M, Tian L, Yang J, Xing W, Zhang W, Wang J, Xu H, Wang L, Zhang D, Ren H (2017) Neuroprotection by IFN-γ via astrocyte-secreted IL-6 in acute neuroinflammation. Oncotarget 8:40065–40078. https://doi.org/10.18632/oncotarget.16990

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hu MH, Zheng QF, Jia XZ, Li Y, Dong YC, Wang CY, Lin QY, Zhang FY, Zhao RB, Xu HW, Zhou JH, Yuan HP, Zhang WH, Ren H (2014) Neuroprotection effect of interleukin (IL)-17 secreted by reactive astrocytes is emerged from a high-level IL-17-containing environment during acute neuroinflammation. Clin Exp Immunol 175:268–284. https://doi.org/10.1111/cei.12219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chowdhury T, Allen MF, Thorn TL, He Y, Hewett SJ (2018) Interleukin-1β protects neurons against oxidant-induced injury via the promotion of astrocyte glutathione production. Antioxidants (Basel) 7(8):E100. https://doi.org/10.3390/antiox7080100

    Article  CAS  Google Scholar 

  53. Nakagawa S, Izumi Y, Takada-Takatori Y, Akaike A, Kume T (2019) Increased CCL6 expression in astrocytes and neuronal protection from neuron-astrocyte interactions. Biochem Biophys Res Commun 519(4):777–782. https://doi.org/10.1016/j.bbrc.2019.09.030

    Article  CAS  PubMed  Google Scholar 

  54. Meshitsuka S, Aremu DA (2008) (13)C heteronuclear NMR studies of the interaction of cultured neurons and astrocytes and aluminum blockade of the preferential release of citrate from astrocytes. J Biol Inorg Chem 13:241–247

    CAS  PubMed  Google Scholar 

  55. Kelleher JA, Chan TY, Chan PH, Gregory GA (1996) Protection of astrocytes by fructose 1,6-bisphosphate and citrate ameliorates neuronal injury under hypoxic conditions. Brain Res 726:167–173

    CAS  PubMed  Google Scholar 

  56. Miao Y, Qiu Y, Lin Y, Miao Z, Zhang J, Lu X (2011) Protection by pyruvate against glutamate neurotoxicity is mediated by astrocytes through a glutathione-dependent mechanism. Mol Biol Rep 38:3235–3242. https://doi.org/10.1007/s11033-010-9998-0

    Article  CAS  PubMed  Google Scholar 

  57. Wang XF, Cynader MS (2001) Pyruvate released by astrocytes protects neurons from copper-catalyzed cysteine neurotoxicity. J Neurosci 21:3322–3331

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Falkowska A, Gutowska I, Goschorska M, Nowacki P, Chlubek D, Baranowska-Bosiacka I (2015) Energy metabolism of the brain, including the cooperation between astrocytes and neurons, especially in the context of glycogen metabolism. Int J Mol Sci 16:25959–25981. https://doi.org/10.3390/ijms161125939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fernandez-Fernandez S, Almeida A, Bolaños JP (2012) Antioxidant and bioenergetic coupling between neurons and astrocytes. Biochem J 443:3–11. https://doi.org/10.1042/BJ20111943

    Article  CAS  PubMed  Google Scholar 

  60. Salazar M, Pariente JA, Salido GM, González A (2008) Ethanol induces glutamate secretion by Ca2+ mobilization and ROS generation in rat hippocampal astrocytes. Neurochem Int 52:1061–1067

    CAS  PubMed  Google Scholar 

  61. Dienel GA (2019) Brain glucose metabolism: integration of energetics with function. Physiol Rev 99:949–1045. https://doi.org/10.1152/physrev.00062.2017

    Article  CAS  PubMed  Google Scholar 

  62. Barker JE, Bolaños JP, Land JM, Clark JB, Heales SJ (1996) Glutathione protects astrocytes from peroxynitrite-mediated mitochondrial damage: implications for neuronal/astrocytic trafficking and neurodegeneration. Dev Neurosci 18:391–396

    CAS  PubMed  Google Scholar 

  63. Cabezas R, Avila M, Gonzalez J, El-Bachá RS, Báez E, García-Segura LM, Jurado Coronel JC, Capani F, Cardona-Gomez GP, Barreto GE (2014) Astrocytic modulation of blood brain barrier: perspectives on Parkinson’s disease. Front Cell Neurosci 8:211. https://doi.org/10.3389/fncel.2014.00211

    Article  PubMed  PubMed Central  Google Scholar 

  64. Valdovinos-Flores C, Gonsebatt ME (2012) The role of amino acid transporters in GSH synthesis in the blood-brain barrier and central nervous system. Neurochem Int 61:405–414. https://doi.org/10.1016/j.neuint.2012.05.019

    Article  CAS  PubMed  Google Scholar 

  65. Dringen R, Pfeiffer B, Hamprecht B (1999) Synthesis of the antioxidant glutathione in neurons: supply by astrocytes of CysGly as precursor for neuronal glutathione. J Neurosci 19:562–569

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Jimenez-Blasco D, Santofimia-Castaño P, Gonzalez A, Almeida A, Bolaños JP (2015) Astrocyte NMDA receptors’ activity sustains neuronal survival through a Cdk5-Nrf2 pathway. Cell Death Differ 22:1877–1889. https://doi.org/10.1038/cdd.2015.4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shanker G, Aschner M (2001) Identification and characterization of uptake systems for cystine and cysteine in cultured astrocytes and neurons: evidence for methylmercury-targeted disruption of astrocyte transport. J Neurosci Res 66:998–1002

    CAS  PubMed  Google Scholar 

  68. Pizzurro DM, Dao K, Costa LG (2014) Astrocytes protect against diazinon- and diazoxon-induced inhibition of neurite outgrowth by regulating neuronal glutathione. Toxicology 318:59–68. https://doi.org/10.1016/j.tox.2014.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Shih AY, Johnson DA, Wong G, Kraft AD, Jiang L, Erb H, Johnson JA, Murphy TH (2003) Coordinate regulation of glutathione biosynthesis and release by Nrf2-expressing glia potently protects neurons from oxidative stress. J Neurosci 23:3394–3406

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Calkins MJ, Vargas MR, Johnson DA, Johnson JA (2010) Astrocyte-specific overexpression of Nrf2 protects striatal neurons from mitochondrial complex II inhibition. Toxicol Sci 115:557–568. https://doi.org/10.1093/toxsci/kfq072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Narasimhan M, Rathinam M, Patel D, Henderson G, Mahimainathan L (2012) Astrocytes prevent ethanol induced apoptosis of Nrf2 depleted neurons by maintaining GSH homeostasis. Open J Apoptosis 1(2):256. https://doi.org/10.4236/ojapo.2012.12002

    Article  CAS  Google Scholar 

  72. Gegg ME, Beltran B, Salas-Pino S, Bolanos JP, Clark JB, Moncada S, Heales SJ (2003) Differential effect of nitric oxide on glutathione metabolism and mitochondrial function in astrocytes and neurones: implications for neuroprotection/neurodegeneration? J Neurochem 86:228–237

    CAS  PubMed  Google Scholar 

  73. Diaz-Hernandez JI, Almeida A, Delgado-Esteban M, Fernandez E, Bolaños JP (2005) Knockdown of glutamate-cysteine ligase by small hairpin RNA reveals that both catalytic and modulatory subunits are essential for the survival of primary neurons. J Biol Chem 280:38992–39001

    CAS  PubMed  Google Scholar 

  74. Gómez-Gonzalo M, Martin-Fernandez M, Martínez-Murillo R, Mederos S, Hernández-Vivanco A, Jamison S, Fernandez AP, Serrano J, Calero P, Futch HS, Corpas R, Sanfeliu C, Perea G, Araque A (2017) Neuron-astrocyte signaling is preserved in the aging brain. Glia 65:569–580. https://doi.org/10.1002/glia.23112

    Article  PubMed  PubMed Central  Google Scholar 

  75. Zulfiqar S, Garg P, Nieweg K (2019) Contribution of astrocytes to metabolic dysfunction in the Alzheimer’s disease brain. Biol Chem 400:1113–1127. https://doi.org/10.1515/hsz-2019-0140

    Article  CAS  PubMed  Google Scholar 

  76. Wu XM, Qian C, Zhou YF, Yan YC, Luo QQ, Yung WH, Zhang FL, Jiang LR, Qian ZM, Ke Y (2017) Bi-directionally protective communication between neurons and astrocytes under ischemia. Redox Biol 13:20–31. https://doi.org/10.1016/j.redox.2017.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Acuña-Castroviejo D, Escames G, Venegas C, Díaz-Casado ME, Lima-Cabello E, López LC, Rosales-Corral S, Tan DX, Reiter RJ (2014) Extrapineal melatonin: sources, regulation, and potential functions. Cell Mol Life Sci 71:2997–3025. https://doi.org/10.1007/s00018-014-1579-2

    Article  CAS  PubMed  Google Scholar 

  78. Favero G, Moretti E, Bonomini F, Reiter RJ, Rodella LF, Rezzani R (2018) Promising antineoplastic actions of melatonin. Front Pharmacol 9:1086. https://doi.org/10.3389/fphar.2018.01086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Galano A, Reiter RJ (2018) Melatonin and its metabolites vs oxidative stress: from individual actions to collective protection. J Pineal Res 65:e12514. https://doi.org/10.1111/jpi.12514

    Article  CAS  PubMed  Google Scholar 

  80. Galano A, Tan DX, Reiter RJ (2018) Melatonin: a versatile protector against oxidative DNA damage. Molecules 23(3):E530. https://doi.org/10.3390/molecules23030530

    Article  CAS  PubMed  Google Scholar 

  81. Majidinia M, Reiter RJ, Shakouri SK, Yousefi B (2018) The role of melatonin, a multitasking molecule, in retarding the processes of ageing. Ageing Res Rev 47:198–213. https://doi.org/10.1016/j.arr.2018.07.010

    Article  CAS  PubMed  Google Scholar 

  82. Peters JL, Cassone VM, Zoran MJ (2005) Melatonin modulates intercellular communication among cultured chick astrocytes. Brain Res 1031:10–19. https://doi.org/10.1016/j.brainres.2004.09.064

    Article  CAS  PubMed  Google Scholar 

  83. Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre-Jimenez M, Qin L (2016) Melatonin as an antioxidant: under promises but over delivers. J Pineal Res 61:253–278. https://doi.org/10.1111/jpi.12360

    Article  CAS  PubMed  Google Scholar 

  84. Shi Y, Fang YY, Wei YP, Jiang Q, Zeng P, Tang N, Lu Y, Tian Q (2018) Melatonin in synaptic impairments of Alzheimer’s disease. J Alzheimers Dis 63:911–926. https://doi.org/10.3233/JAD-171178

    Article  PubMed  Google Scholar 

  85. Cardinali DP (2019) Melatonin: clinical perspectives in neurodegeneration. Front Endocrinol (Lausanne) 10:480. https://doi.org/10.3389/fendo.2019.00480

    Article  Google Scholar 

  86. Maurizi CP (1987) Dementia–the failure of hippocampal plasticity and dreams. Is there a preventative role for melatonin? Med Hypotheses 24:59–68

    CAS  PubMed  Google Scholar 

  87. Mishima K, Okawa M, Hishikawa Y, Hozumi S, Hori H, Takahashi K (1994) Morning bright light therapy for sleep and behavior disorders in elderly patients with dementia. Acta Psychiatr Scand 89:1–7

    CAS  PubMed  Google Scholar 

  88. Skene DJ, Vivien-Roels B, Sparks DL, Hunsaker JC, Pévet P, Ravid D, Swaab DF (1990) Daily variation in the concentration of melatonin and 5-methoxytryptophol in the human pineal gland: effect of age and Alzheimer’s disease. Brain Res 528:170–174

    CAS  PubMed  Google Scholar 

  89. Hoppe JB, Frozza RL, Horn AP, Comiran RA, Bernardi A, Campos MM, Battastini AM, Salbego C (2010) Amyloid-beta neurotoxicity in organotypic culture is attenuated by melatonin: involvement of GSK-3beta, tau and neuroinflammation. J Pineal Res 48:230–238. https://doi.org/10.1111/j.1600-079X.2010.00747.x

    Article  CAS  PubMed  Google Scholar 

  90. Peng CX, Hu J, Liu D, Hong XP, Wu YY, Zhu LQ, Wang JZ (2013) Disease-modified glycogen synthase kinase-3β intervention by melatonin arrests the pathology and memory deficits in an Alzheimer’s animal model. Neurobiol Aging 34:1555–1563. https://doi.org/10.1016/j.neurobiolaging.2012.12.010

    Article  CAS  PubMed  Google Scholar 

  91. Gong YH, Hua N, Zang X, Huang T, He L (2018) Melatonin ameliorates Aβ1-42 -induced Alzheimer’s cognitive deficits in mouse model. J Pharm Pharmacol 70:70–80. https://doi.org/10.1111/jphp.12830

    Article  CAS  PubMed  Google Scholar 

  92. Ansari Dezfouli M, Zahmatkesh M, Farahmandfar M, Khodagholi F (2019) Melatonin protective effect against amyloid β-induced neurotoxicity mediated by mitochondrial biogenesis; involvement of hippocampal Sirtuin-1 signaling pathway. Physiol Behav 204:65–75. https://doi.org/10.1016/j.physbeh.2019.02.016

    Article  CAS  PubMed  Google Scholar 

  93. Balmik AA, Chinnathambi S (2018) Multi-faceted role of melatonin in neuroprotection and amelioration of tau aggregates in Alzheimer’s disease. J Alzheimers Dis 62:1481–1493. https://doi.org/10.3233/JAD-170900

    Article  CAS  PubMed  Google Scholar 

  94. Pappolla MA, Matsubara E, Vidal R, Pacheco-Quinto J, Poeggeler B, Zagorski M, Sambamurti K (2018) Melatonin treatment enhances Aβ lymphatic clearance in a transgenic mouse model of amyloidosis. Curr Alzheimer Res 15:637–642. https://doi.org/10.2174/1567205015666180411092551

    Article  CAS  PubMed  Google Scholar 

  95. Yao K, Zhao YF, Zu HB (2019) Melatonin receptor stimulation by agomelatine prevents Aβ-induced tau phosphorylation and oxidative damage in PC12 cells. Drug Des Dev Ther 13:387–396. https://doi.org/10.2147/DDDT.S182684

    Article  CAS  Google Scholar 

  96. Olcese JM, Cao C, Mori T, Mamcarz MB, Maxwell A, Runfeldt MJ, Wang L, Zhang C, Lin X, Zhang G, Arendash GW (2009) Protection against cognitive deficits and markers of neurodegeneration by long-term oral administration of melatonin in a transgenic model of Alzheimer disease. J Pineal Res 47:82–96. https://doi.org/10.1111/j.1600-079X.2009.00692.x

    Article  CAS  PubMed  Google Scholar 

  97. Spuch C, Antequera D, Isabel Fernandez-Bachiller M, Isabel Rodríguez-Franco M, Carro E (2010) A new tacrine-melatonin hybrid reduces amyloid burden and behavioral deficits in a mouse model of Alzheimer’s disease. Neurotox Res 17:421–431. https://doi.org/10.1007/s12640-009-9121-2

    Article  CAS  PubMed  Google Scholar 

  98. Dragicevic N, Copes N, O’Neal-Moffitt G, Jin J, Buzzeo R, Mamcarz M, Tan J, Cao C, Olcese JM, Arendash GW, Bradshaw PC (2011) Melatonin treatment restores mitochondrial function in Alzheimer’s mice: a mitochondrial protective role of melatonin membrane receptor signaling. J Pineal Res 51:75–86. https://doi.org/10.1111/j.1600-079X.2011.00864.x

    Article  CAS  PubMed  Google Scholar 

  99. Rosales-Corral SA, Lopez-Armas G, Cruz-Ramos J, Melnikov VG, Tan DX, Manchester LC, Munoz R, Reiter RJ (2012) Alterations in lipid levels of mitochondrial membranes induced by amyloid-β: a protective role of melatonin. Int J Alzheimers Dis 2012:459806. https://doi.org/10.1155/2012/459806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mendivil-Perez M, Soto-Mercado V, Guerra-Librero A, Fernandez-Gil BI, Florido J, Shen YQ, Tejada MA, Capilla-Gonzalez V, Rusanova I, Garcia-Verdugo JM, Acuña-Castroviejo D, López LC, Velez-Pardo C, Jimenez-Del-Rio M, Ferrer JM, Escames G (2017) Melatonin enhances neural stem cell differentiation and engraftment by increasing mitochondrial function. J Pineal Res 63(2):e12415. https://doi.org/10.1111/jpi.12415

    Article  CAS  Google Scholar 

  101. Jun Z, Li Z, Fang W, Fengzhen Y, Puyuan W, Wenwen L, Zhi S, Bondy SC (2013) Melatonin decreases levels of S100β and NFΚB, increases levels of synaptophysin in a rat model of Alzheimer’s disease. Curr Aging Sci 6:142–149

    PubMed  Google Scholar 

  102. Ali T, Badshah H, Kim TH, Kim MO (2015) Melatonin attenuates D-galactose-induced memory impairment, neuroinflammation and neurodegeneration via RAGE/NF-K B/JNK signaling pathway in aging mouse model. J Pineal Res 58:71–85. https://doi.org/10.1111/jpi.12194

    Article  CAS  PubMed  Google Scholar 

  103. Chojnacki JE, Liu K, Yan X, Toldo S, Selden T, Estrada M, Rodríguez-Franco MI, Halquist MS, Ye D, Zhang S (2014) Discovery of 5-(4-hydroxyphenyl)-3-oxo-pentanoic acid [2-(5-methoxy-1H-indol-3-yl)-ethyl]-amide as a neuroprotectant for Alzheimer’s disease by hybridization of curcumin and melatonin. ACS Chem Neurosci 5:690–699. https://doi.org/10.1021/cn500081s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Buendia I, Egea J, Parada E, Navarro E, León R, Rodríguez-Franco MI, López MG (2015) The melatonin-N, N-dibenzyl(N-methyl)amine hybrid ITH91/IQM157 affords neuroprotection in an in vitro Alzheimer’s model via hemo-oxygenase-1 induction. ACS Chem Neurosci 6:288–296. https://doi.org/10.1021/cn5002073

    Article  CAS  PubMed  Google Scholar 

  105. Wang J, Wang ZM, Li XM, Li F, Wu JJ, Kong LY, Wang XB (2016) Synthesis and evaluation of multi-target-directed ligands for the treatment of Alzheimer’s disease based on the fusion of donepezil and melatonin. Bioorg Med Chem 24:4324–4338. https://doi.org/10.1016/j.bmc.2016.07.025

    Article  CAS  PubMed  Google Scholar 

  106. Benchekroun M, Romero A, Egea J, León R, Michalska P, Buendía I, Jimeno ML, Jun D, Janockova J, Sepsova V, Soukup O, Bautista-Aguilera OM, Refouvelet B, Ouari O, Marco-Contelles J, Ismaili L (2016) The antioxidant additive approach for Alzheimer’s disease therapy: new ferulic (lipoic) acid plus melatonin modified tacrines as cholinesterases inhibitors, direct antioxidants, and nuclear factor (Erythroid-Derived 2)-like 2 activators. J Med Chem 59:9967–9973. https://doi.org/10.1021/acs.jmedchem.6b01178

    Article  CAS  PubMed  Google Scholar 

  107. Pachón-Angona I, Refouvelet B, Andrýs R, Martin H, Luzet V, Iriepa I, Moraleda I, Diez-Iriepa D, Oset-Gasque MJ, Marco-Contelles J, Musilek K, Ismaili L (2019) Donepezil + chromone + melatonin hybrids as promising agents for Alzheimer’s disease therapy. J Enzyme Inhib Med Chem 34:479–489. https://doi.org/10.1080/14756366.2018.1545766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Gunasingh MJ, Philip JE, Ashok BS, Kirubagaran R, Jebaraj WC, Davis GD, Vignesh S, Dhandayuthapani S, Jayakumar R (2008) Melatonin prevents amyloid protofibrillar induced oxidative imbalance and biogenic amine catabolism. Life Sci 83:96–102. https://doi.org/10.1016/j.lfs.2008.05.011

    Article  CAS  PubMed  Google Scholar 

  109. Yang X, Yang Y, Fu Z, Li Y, Feng J, Luo J, Zhang Q, Wang Q, Tian Q (2011) Melatonin ameliorates Alzheimer-like pathological changes and spatial memory retention impairment induced by calyculin A. J Psychopharmacol 25:1118–1125. https://doi.org/10.1177/0269881110367723

    Article  CAS  PubMed  Google Scholar 

  110. Antón-Tay F, Díaz JL, Fernández-Guardiola A (1971) On the effect of melatonin upon human brain. Its possible therapeutic implications. Life Sci I 10:841–850

    PubMed  Google Scholar 

  111. Papavasiliou PS, Cotzias GC, Düby SE, Steck AJ, Bell M, Lawrence WH (1972) Melatonin and parkinsonism. JAMA 221:88–89

    CAS  PubMed  Google Scholar 

  112. Shaw KM, Stern GM, Sandler M (1973) Melatonin and parkinsonism. Lancet 1:271

    CAS  PubMed  Google Scholar 

  113. Van Praag HM (1970) Indoleamines and the central nervous system; a sounding of their clinical significance. Psychiatr Neurol Neurochir 73:9–36

    PubMed  Google Scholar 

  114. Phillipson OT (2017) Alpha-synuclein, epigenetics, mitochondria, metabolism, calcium traffic, & circadian dysfunction in Parkinson’s disease. An integrated strategy for management. Ageing Res Rev 40:149–167. https://doi.org/10.1016/j.arr.2017.09.006

    Article  CAS  PubMed  Google Scholar 

  115. Willis GL (2008) Parkinson’s disease as a neuroendocrine disorder of circadian function: dopamine-melatonin imbalance and the visual system in the genesis and progression of the degenerative process. Rev Neurosci 19:245–316

    CAS  PubMed  Google Scholar 

  116. Lin L, Meng T, Liu T, Zheng Z (2013) Increased melatonin may play dual roles in the striata of a 6-hydroxydopamine model of Parkinson’s disease. Life Sci 92:311–316. https://doi.org/10.1016/j.lfs.2013.01.007

    Article  CAS  PubMed  Google Scholar 

  117. Naskar A, Manivasagam T, Chakraborty J, Singh R, Thomas B, Dhanasekaran M, Mohanakumar KP (2013) Melatonin synergizes with low doses of L-DOPA to improve dendritic spine density in the mouse striatum in experimental Parkinsonism. J Pineal Res 55:304–312. https://doi.org/10.1111/jpi.12076

    Article  CAS  PubMed  Google Scholar 

  118. Ma J, Shaw VE, Mitrofanis J (2009) Does melatonin help save dopaminergic cells in MPTP-treated mice? Parkinsonism Relat Disord 15:307–314. https://doi.org/10.1016/j.parkreldis.2008.07.008

    Article  PubMed  Google Scholar 

  119. Brito-Armas JM, Baekelandt V, Castro-Hernández JR, González-Hernández T, Rodríguez M, Castro R (2013) Melatonin prevents dopaminergic cell loss induced by lentiviral vectors expressing A30P mutant alpha-synuclein. Histol Histopathol 28:999–1006. https://doi.org/10.14670/HH-28.999

    Article  CAS  PubMed  Google Scholar 

  120. Naskar A, Prabhakar V, Singh R, Dutta D, Mohanakumar KP (2015) Melatonin enhances L-DOPA therapeutic effects, helps to reduce its dose, and protects dopaminergic neurons in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonism in mice. J Pineal Res 58:262–274. https://doi.org/10.1111/jpi.12212

    Article  CAS  PubMed  Google Scholar 

  121. Paul R, Phukan BC, Justin Thenmozhi A, Manivasagam T, Bhattacharya P, Borah A (2018) Melatonin protects against behavioral deficits, dopamine loss and oxidative stress in homocysteine model of Parkinson’s disease. Life Sci 192:238–245. https://doi.org/10.1016/j.lfs.2017.11.016

    Article  CAS  PubMed  Google Scholar 

  122. Poehler AM, Xiang W, Spitzer P, May VE, Meixner H, Rockenstein E, Chutna O, Outeiro TF, Winkler J, Masliah E, Klucken J (2014) Autophagy modulates SNCA/α-synuclein release, thereby generating a hostile microenvironment. Autophagy 10:2171–2192. https://doi.org/10.4161/auto.36436

    Article  CAS  PubMed  Google Scholar 

  123. Su LY, Li H, Lv L, Feng YM, Li GD, Luo R, Zhou HJ, Lei XG, Ma L, Li JL, Xu L, Hu XT, Yao YG (2015) Melatonin attenuates MPTP-induced neurotoxicity via preventing CDK5-mediated autophagy and SNCA/α-synuclein aggregation. Autophagy 11:1745–1759. https://doi.org/10.1080/15548627.2015.1082020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Adi N, Mash DC, Ali Y, Singer C, Shehadeh L, Papapetropoulos S (2010) Melatonin MT1 and MT2 receptor expression in Parkinson’s disease. Med Sci Monit 16:BR61–BR67

    CAS  PubMed  Google Scholar 

  125. Lin L, Du Y, Yuan S, Shen J, Lin X, Zheng Z (2014) Serum melatonin is an alternative index of Parkinson’s disease severity. Brain Res 1547:43–48. https://doi.org/10.1016/j.brainres.2013.12.021

    Article  CAS  PubMed  Google Scholar 

  126. Sharma S, Moon CS, Khogali A, Haidous A, Chabenne A, Ojo C, Jelebinkov M, Kurdi Y, Ebadi M (2013) Biomarkers in Parkinson’s disease (recent update). Neurochem Int 63:201–229. https://doi.org/10.1016/j.neuint.2013.06.005

    Article  CAS  PubMed  Google Scholar 

  127. Jin BK, Shin DY, Jeong MY, Gwag MR, Baik HW, Yoon KS, Cho YH, Joo WS, Kim YS, Baik HH (1998) Melatonin protects nigral dopaminergic neurons from 1-methyl-4-phenylpyridinium (MPP +) neurotoxicity in rats. Neurosci Lett 245:61–64

    CAS  PubMed  Google Scholar 

  128. Mayo JC, Sainz RM, Uria H, Antolin I, Esteban MM, Rodriguez C (1998) Melatonin prevents apoptosis induced by 6-hydroxydopamine in neuronal cells: implications for Parkinson’s disease. J Pineal Res 24:179–192

    CAS  PubMed  Google Scholar 

  129. Sharma R, McMillan CR, Tenn CC, Niles LP (2006) Physiological neuroprotection by melatonin in a 6-hydroxydopamine model of Parkinson’s disease. Brain Res 1068:230–236

    CAS  PubMed  Google Scholar 

  130. Singhal NK, Srivastava G, Patel DK, Jain SK, Singh MP (2011) Melatonin or silymarin reduces maneb- and paraquat-induced Parkinson’s disease phenotype in the mouse. J Pineal Res 50:97–109. https://doi.org/10.1111/j.1600-079X.2010.00819.x

    Article  CAS  PubMed  Google Scholar 

  131. Ortiz GG, Moráles-Sánchez EW, Pacheco-Moisés FP, Jiménez-Gil FJ, Macías-Islas MA, Mireles-Ramírez MA, González-Usigli H (2017) Effect of melatonin administration on cyclooxygenase-2 activity, serum levels of nitric oxide metabolites, lipoperoxides and glutathione peroxidase activity in patients with Parkinson’s disease. Gac Med Mex 153:S72–S81. https://doi.org/10.24875/GMM.M000008

    Article  PubMed  Google Scholar 

  132. Cardinali DP, Pagano ES, Scacchi Bernasconi PA, Reynoso R, Scacchi P (2013) Melatonin and mitochondrial dysfunction in the central nervous system. Horm Behav 63:322–330. https://doi.org/10.1016/j.yhbeh.2012.02.020

    Article  CAS  PubMed  Google Scholar 

  133. Absi E, Ayala A, Machado A, Parrado J (2000) Protective effect of melatonin against the 1-methyl-4-phenylpyridinium-induced inhibition of complex I of the mitochondrial respiratory chain. J Pineal Res 29:40–47

    CAS  PubMed  Google Scholar 

  134. Dabbeni-Sala F, Di Santo S, Franceschini D, Skaper SD, Giusti P (2001) Melatonin protects against 6-OHDA-induced neurotoxicity in rats: a role for mitochondrial complex I activity. FASEB J 15:164–170

    CAS  PubMed  Google Scholar 

  135. Díaz-Casado ME, Lima E, García JA, Doerrier C, Aranda P, Sayed RK, Guerra-Librero A, Escames G, López LC, Acuña-Castroviejo D (2016) Melatonin rescues zebrafish embryos from the parkinsonian phenotype restoring the parkin/PINK1/DJ-1/MUL1 network. J Pineal Res 61:96–107. https://doi.org/10.1111/jpi.12332

    Article  CAS  PubMed  Google Scholar 

  136. Chuang JI, Pan IL, Hsieh CY, Huang CY, Chen PC, Shin JW (2016) Melatonin prevents the dynamin-related protein 1-dependent mitochondrial fission and oxidative insult in the cortical neurons after 1-methyl-4-phenylpyridinium treatment. J Pineal Res 61:230–240. https://doi.org/10.1111/jpi.12343

    Article  CAS  PubMed  Google Scholar 

  137. López A, Ortiz F, Doerrier C, Venegas C, Fernández-Ortiz M, Aranda P, Díaz-Casado ME, Fernández-Gil B, Barriocanal-Casado E, Escames G, López LC, Acuña-Castroviejo D (2017) Mitochondrial impairment and melatonin protection in parkinsonian mice do not depend of inducible or neuronal nitric oxide synthases. PLoS ONE 12:e0183090. https://doi.org/10.1371/journal.pone.0183090

    Article  PubMed  PubMed Central  Google Scholar 

  138. Lapin V, Ebels I (1981) The role of the pineal gland in neuroendocrine control mechanisms of neoplastic growth. J Neural Transm 50:275–282

    CAS  PubMed  Google Scholar 

  139. Maitra S, Bhattacharya D, Das S, Bhattacharya S (2019) Melatonin and its anti-glioma functions: a comprehensive review. Rev Neurosci 30:527–541. https://doi.org/10.1515/revneuro-2018-0041

    Article  PubMed  Google Scholar 

  140. Batcioglu K, Karagözler AA, Ozturk IC, Genc M, Bay A, Ozturk F, Aydogdu N (2005) Comparison of chemopreventive effects of Vitamin E plus selenium versus melatonin in 7,12-dimethylbenz(a)anthracene-induced mouse brain damage. Cancer Detect Prev 29:54–58

    CAS  PubMed  Google Scholar 

  141. Farhood B, Goradel NH, Mortezaee K, Khanlarkhani N, Salehi E, Nashtaei MS, Mirtavoos-Mahyari H, Motevaseli E, Shabeeb D, Musa AE, Najafi M (2019) Melatonin as an adjuvant in radiotherapy for radioprotection and radiosensitization. Clin Transl Oncol 21:268–279. https://doi.org/10.1007/s12094-018-1934-0

    Article  CAS  PubMed  Google Scholar 

  142. Lissoni P, Meregalli S, Nosetto L, Barni S, Tancini G, Fossati V, Maestroni G (1996) Increased survival time in brain glioblastomas by a radioneuroendocrine strategy with radiotherapy plus melatonin compared to radiotherapy alone. Oncology 53:43–46

    CAS  PubMed  Google Scholar 

  143. Lissoni P, Fumagalli L, Paolorossi F, Rovelli F, Roselli MG, Maestroni GJ (1997) Anticancer neuroimmunomodulation by pineal hormones other than melatonin: preliminary phase II study of the pineal indole 5-methoxytryptophol in association with low-dose IL-2 and melatonin. J Biol Regul Homeost Agents 11:119–122

    CAS  PubMed  Google Scholar 

  144. Moss RW (2007) Do antioxidants interfere with radiation therapy for cancer? Integr Cancer Ther 6:281–292

    CAS  PubMed  Google Scholar 

  145. Naseri S, Moghahi SMHN, Mokhtari T, Roghani M, Shirazi AR, Malek F, Rastegar T (2017) Radio-protective effects of melatonin on subventricular zone in irradiated rat: decrease in apoptosis and upregulation of nestin. J Mol Neurosci 63:198–205. https://doi.org/10.1007/s12031-017-0970-5

    Article  CAS  PubMed  Google Scholar 

  146. Gu J, Lu Z, Ji C, Chen Y, Liu Y, Lei Z, Wang L, Zhang HT, Li X (2017) Melatonin inhibits proliferation and invasion via repression of miRNA-155 in glioma cells. Biomed Pharmacother 93:969–975. https://doi.org/10.1016/j.biopha.2017.07.010

    Article  CAS  PubMed  Google Scholar 

  147. Martín V, Herrera F, Carrera-Gonzalez P, García-Santos G, Antolín I, Rodriguez-Blanco J, Rodriguez C (2006) Intracellular signaling pathways involved in the cell growth inhibition of glioma cells by melatonin. Cancer Res 66:1081–1088

    PubMed  Google Scholar 

  148. Qu J, Rizak JD, Li X, Li J, Ma Y (2013) Melatonin treatment increases the transcription of cell proliferation-related genes prior to inducing cell death in C6 glioma cells in vitro. Oncol Lett 6:347–352

    PubMed  PubMed Central  Google Scholar 

  149. Martín V, Sanchez-Sanchez AM, Puente-Moncada N, Gomez-Lobo M, Alvarez-Vega MA, Antolín I, Rodriguez C (2014) Involvement of autophagy in melatonin-induced cytotoxicity in glioma-initiating cells. J Pineal Res 57:308–316. https://doi.org/10.1111/jpi.12170

    Article  CAS  PubMed  Google Scholar 

  150. Franco DG, Moretti IF, Marie SKN (2018) Mitochondria transcription factor A: a putative target for the effect of melatonin on U87MG malignant glioma cell line. Molecules 23:E1129. https://doi.org/10.3390/molecules23051129

    Article  CAS  PubMed  Google Scholar 

  151. Weinreb O, Mandel S, Youdim MB (2003) cDNA gene expression profile homology of antioxidants and their antiapoptotic and proapoptotic activities in human neuroblastoma cells. FASEB J 17:935–937

    CAS  PubMed  Google Scholar 

  152. Lee H, Lee HJ, Jung JH, Shin EA, Kim SH (2018) Melatonin disturbs SUMOylation-mediated crosstalk between c-Myc and nestin via MT1 activation and promotes the sensitivity of paclitaxel in brain cancer stem cells. J Pineal Res 65:e12496. https://doi.org/10.1111/jpi.12496

    Article  CAS  PubMed  Google Scholar 

  153. García-Santos G, Antolín I, Herrera F, Martín V, Rodriguez-Blanco J, del Pilar Carrera M, Rodriguez C (2006) Melatonin induces apoptosis in human neuroblastoma cancer cells. J Pineal Res 41:130–135

    PubMed  Google Scholar 

  154. Pizarro JG, Yeste-Velasco M, Esparza JL, Verdaguer E, Pallàs M, Camins A, Folch J (2008) The antiproliferative activity of melatonin in B65 rat dopaminergic neuroblastoma cells is related to the downregulation of cell cycle-related genes. J Pineal Res 45:8–16. https://doi.org/10.1111/j.1600-079X.2007.00548.x

    Article  CAS  PubMed  Google Scholar 

  155. Chen X, Wang Z, Ma H, Zhang S, Yang H, Wang H, Fang Z (2017) Melatonin attenuates hypoxia-induced epithelial-mesenchymal transition and cell aggressive via Smad7/CCL20 in glioma. Oncotarget 8:93580–93592. https://doi.org/10.18632/oncotarget.20525

    Article  PubMed  PubMed Central  Google Scholar 

  156. Ma H, Wang Z, Hu L, Zhang S, Zhao C, Yang H, Wang H, Fang Z, Wu L, Chen X (2018) The melatonin-MT1 receptor axis modulates tumor growth in PTEN-mutated gliomas. Biochem Biophys Res Commun 496:1322–1330. https://doi.org/10.1016/j.bbrc.2018.02.010

    Article  CAS  PubMed  Google Scholar 

  157. Kinker GS, Oba-Shinjo SM, Carvalho-Sousa CE, Muxel SM, Marie SK, Markus RP, Fernandes PA (2016) Melatonergic system-based two-gene index is prognostic in human gliomas. J Pineal Res 60:84–94. https://doi.org/10.1111/jpi.12293

    Article  CAS  PubMed  Google Scholar 

  158. Martín V, García-Santos G, Rodriguez-Blanco J, Casado-Zapico S, Sanchez-Sanchez A, Antolín I, Medina M, Rodriguez C (2010) Melatonin sensitizes human malignant glioma cells against TRAIL-induced cell death. Cancer Lett 287:216–223. https://doi.org/10.1016/j.canlet.2009.06.016

    Article  CAS  PubMed  Google Scholar 

  159. Martín V, Sanchez-Sanchez AM, Herrera F, Gomez-Manzano C, Fueyo J, Alvarez-Vega MA, Antolín I, Rodriguez C (2013) Melatonin-induced methylation of the ABCG2/BCRP promoter as a novel mechanism to overcome multidrug resistance in brain tumour stem cells. Br J Cancer 108:2005–2012. https://doi.org/10.1038/bjc.2013.188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Sung GJ, Kim SH, Kwak S, Park SH, Song JH, Jung JH, Kim H, Choi KC (2019) Inhibition of TFEB oligomerization by co-treatment of melatonin with vorinostat promotes the therapeutic sensitivity in glioblastoma and glioma stem cells. J Pineal Res 66:e12556. https://doi.org/10.1111/jpi.12556

    Article  CAS  PubMed  Google Scholar 

  161. Giusti P, Gusella M, Lipartiti M, Milani D, Zhu W, Vicini S, Manev H (1995) Melatonin protects primary cultures of cerebellar granule neurons from kainate but not from N-methyl-D-aspartate excitotoxicity. Exp Neurol 131:39–46

    CAS  PubMed  Google Scholar 

  162. Dong W, Huang F, Fan W, Cheng S, Chen Y, Zhang W, Shi H, He H (2010) Differential effects of melatonin on amyloid-beta peptide 25-35-induced mitochondrial dysfunction in hippocampal neurons at different stages of culture. J Pineal Res 48:117–125. https://doi.org/10.1111/j.1600-079X.2009.00734.x

    Article  CAS  PubMed  Google Scholar 

  163. Leeboonngam T, Pramong R, Sae-Ung K, Govitrapong P, Phansuwan-Pujito P (2018) Neuroprotective effects of melatonin on amphetamine-induced dopaminergic fiber degeneration in the hippocampus of postnatal rats. J Pineal Res. https://doi.org/10.1111/jpi.12456

    Article  PubMed  Google Scholar 

  164. Stefanis L, Emmanouilidou E, Pantazopoulou M, Kirik D, Vekrellis K, Tofaris GK (2019) How is alpha-synuclein cleared from the cell? J Neurochem 150:577–590. https://doi.org/10.1111/jnc.14704

    Article  CAS  PubMed  Google Scholar 

  165. Ono K, Mochizuki H, Ikeda T, Nihira T, Takasaki J, Teplow DB, Yamada M (2012) Effect of melatonin on α-synuclein self-assembly and cytotoxicity. Neurobiol Aging 33:2172–2185. https://doi.org/10.1016/j.neurobiolaging.2011.10.015

    Article  CAS  PubMed  Google Scholar 

  166. Zhou H, Cheang T, Su F, Zheng Y, Chen S, Feng J, Pei Z, Chen L (2018) Melatonin inhibits rotenone-induced SH-SY5Y cell death via the downregulation of Dynamin-Related Protein 1 expression. Eur J Pharmacol 819:58–67. https://doi.org/10.1016/j.ejphar.2017.11.040

    Article  CAS  PubMed  Google Scholar 

  167. Lan S, Liu J, Luo X, Bi C (2019) Effects of melatonin on acute brain reperfusion stress: role of Hippo signaling pathway and MFN2-related mitochondrial protection. Cell Stress Chaperones 24:235–245. https://doi.org/10.1007/s12192-018-00960-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Khaldy H, Escames G, León J, Vives F, Luna JD, Acuña-Castroviejo D (2000) Comparative effects of melatonin, L-deprenyl, Trolox and ascorbate in the suppression of hydroxyl radical formation during dopamine autoxidation in vitro. J Pineal Res 29:100–107

    CAS  PubMed  Google Scholar 

  169. Ionov M, Burchell V, Klajnert B, Bryszewska M, Abramov AY (2011) Mechanism of neuroprotection of melatonin against beta-amyloid neurotoxicity. Neuroscience 180:229–237. https://doi.org/10.1016/j.neuroscience.2011.02.045

    Article  CAS  PubMed  Google Scholar 

  170. Saxena G, Bharti S, Kamat PK, Sharma S, Nath C (2010) Melatonin alleviates memory deficits and neuronal degeneration induced by intracerebroventricular administration of streptozotocin in rats. Pharmacol Biochem Behav 94:397–403. https://doi.org/10.1016/j.pbb.2009.09.022

    Article  CAS  PubMed  Google Scholar 

  171. Maharaj DS, Maharaj H, Daya S, Glass BD (2006) Melatonin and 6-hydroxymelatonin protect against iron-induced neurotoxicity. J Neurochem 96:78–81

    CAS  PubMed  Google Scholar 

  172. Lezoualc’h F, Sparapani M, Behl C (1998) N-acetyl-serotonin (normelatonin) and melatonin protect neurons against oxidative challenges and suppress the activity of the transcription factor NF-kappaB. J Pineal Res 24:168–178

    PubMed  Google Scholar 

  173. Sun B, Yang S, Li S, Hang C (2018) Melatonin upregulates nuclear factor erythroid-2 related factor 2 (Nrf2) and mediates mitophagy to protect against early brain injury after subarachnoid hemorrhage. Med Sci Monit 24:6422–6430. https://doi.org/10.12659/MSM.909221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Muhammad T, Ali T, Ikram M, Khan A, Alam SI, Kim MO (2019) Melatonin rescue oxidative stress-mediated neuroinflammation/neurodegeneration and memory impairment in scopolamine-induced amnesia mice model. J Neuroimmune Pharmacol 14:278–294. https://doi.org/10.1007/s11481-018-9824-3

    Article  PubMed  Google Scholar 

  175. Lee SH, Chun W, Kong PJ, Han JA, Cho BP, Kwon OY, Lee HJ, Kim SS (2006) Sustained activation of Akt by melatonin contributes to the protection against kainic acid-induced neuronal death in hippocampus. J Pineal Res 40:79–85

    CAS  PubMed  Google Scholar 

  176. Huang JY, Hong YT, Chuang JI (2009) Fibroblast growth factor 9 prevents MPP + -induced death of dopaminergic neurons and is involved in melatonin neuroprotection in vivo and in vitro. J Neurochem 109:1400–1412. https://doi.org/10.1111/j.1471-4159.2009.06061.x

    Article  CAS  PubMed  Google Scholar 

  177. Cheung RT (2003) The utility of melatonin in reducing cerebral damage resulting from ischemia and reperfusion. J Pineal Res 34:153–160

    CAS  PubMed  Google Scholar 

  178. Cho S, Joh TH, Baik HH, Dibinis C, Volpe BT (1997) Melatonin administration protects CA1 hippocampal neurons after transient forebrain ischemia in rats. Brain Res 755:335–338

    CAS  PubMed  Google Scholar 

  179. Kilic E, Kilic U, Yulug B, Hermann DM, Reiter RJ (2004) Melatonin reduces disseminate neuronal death after mild focal ischemia in mice via inhibition of caspase-3 and is suitable as an add-on treatment to tissue-plasminogen activator. J Pineal Res 36:171–176

    CAS  PubMed  Google Scholar 

  180. Mayo JC, Sainz RM, Antolín I, Rodriguez C (1999) Ultrastructural confirmation of neuronal protection by melatonin against the neurotoxin 6-hydroxydopamine cell damage. Brain Res 818:221–227

    CAS  PubMed  Google Scholar 

  181. Liu XJ, Yuan L, Yang D, Han WN, Li QS, Yang W, Liu QS, Qi JS (2013) Melatonin protects against amyloid-β-induced impairments of hippocampal LTP and spatial learning in rats. Synapse 67:626–636. https://doi.org/10.1002/syn.21677

    Article  CAS  PubMed  Google Scholar 

  182. Stefanova NA, Maksimova KY, Kiseleva E, Rudnitskaya EA, Muraleva NA, Kolosova NG (2015) Melatonin attenuates impairments of structural hippocampal neuroplasticity in OXYS rats during active progression of Alzheimer’s disease-like pathology. J Pineal Res 59:163–177. https://doi.org/10.1111/jpi.12248

    Article  CAS  PubMed  Google Scholar 

  183. Hu C, Wang P, Zhang S, Ren L, Lv Y, Yin R, Bi J (2017) Neuroprotective effect of melatonin on soluble Aβ1-42-induced cortical neurodegeneration via Reelin-Dab1 signaling pathway. Neurol Res 39:621–631. https://doi.org/10.1080/01616412.2017.1312805

    Article  CAS  PubMed  Google Scholar 

  184. Moon UY, Park JY, Park R, Cho JY, Hughes LJ, McKenna J 3rd, Goetzl L, Cho SH, Crino PB, Gambello MJ, Kim S (2015) Impaired Reelin-Dab1 signaling contributes to neuronal migration deficits of tuberous sclerosis complex. Cell Rep 12:965–978. https://doi.org/10.1016/j.celrep.2015.07.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Feng Z, Zhang JT (2004) Protective effect of melatonin on beta-amyloid-induced apoptosis in rat astroglioma C6 cells and its mechanism. Free Radic Biol Med 37:1790–1801

    CAS  PubMed  Google Scholar 

  186. Sinha B, Wu Q, Li W, Tu Y, Sirianni AC, Chen Y, Jiang J, Zhang X, Chen W, Zhou S, Reiter RJ, Manning SM, Patel NJ, Aziz-Sultan AM, Inder TE, Friedlander RM, Fu J, Wang X (2018) Protection of melatonin in experimental models of newborn hypoxic-ischemic brain injury through MT1 receptor. J Pineal Res. https://doi.org/10.1111/jpi.12443

    Article  PubMed  Google Scholar 

  187. Martín V, Sainz RM, Antolín I, Mayo JC, Herrera F, Rodríguez C (2002) Several antioxidant pathways are involved in astrocyte protection by melatonin. J Pineal Res 33:204–212

    PubMed  Google Scholar 

  188. Wang J, Jiang C, Zhang K, Lan X, Chen X, Zang W, Wang Z, Guan F, Zhu C, Yang X, Lu H, Wang J (2019) Melatonin receptor activation provides cerebral protection after traumatic brain injury by mitigating oxidative stress and inflammation via the Nrf2 signaling pathway. Free Radic Biol Med 131:345–355. https://doi.org/10.1016/j.freeradbiomed.2018.12.014

    Article  CAS  PubMed  Google Scholar 

  189. Yusuf IO, Chen HM, Cheng PH, Chang CY, Tsai SJ, Chuang JI, Wu CC, Huang BM, Sun HS, Yang SH (2019) Fibroblast growth factor 9 activates anti-oxidative functions of Nrf2 through ERK signalling in striatal cell models of Huntington’s disease. Free Radic Biol Med 130:256–266. https://doi.org/10.1016/j.freeradbiomed.2018.10.455

    Article  CAS  PubMed  Google Scholar 

  190. Chuang JI, Chen TH (2004) Effect of melatonin on temporal changes of reactive oxygen species and glutathione after MPP(+) treatment in human astrocytoma U373MG cells. J Pineal Res 36:117–125

    CAS  PubMed  Google Scholar 

  191. Das A, Belagodu A, Reiter RJ, Ray SK, Banik NL (2008) Cytoprotective effects of melatonin on C6 astroglial cells exposed to glutamate excitotoxicity and oxidative stress. J Pineal Res 45:117–124. https://doi.org/10.1111/j.1600-079X.2008.00582.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Jou MJ, Peng TI, Reiter RJ, Jou SB, Wu HY, Wen ST (2004) Visualization of the antioxidative effects of melatonin at the mitochondrial level during oxidative stress-induced apoptosis of rat brain astrocytes. J Pineal Res 37:55–70

    CAS  PubMed  Google Scholar 

  193. Jou MJ, Peng TI, Hsu LF, Jou SB, Reiter RJ, Yang CM, Chiao CC, Lin YF, Chen CC (2010) Visualization of melatonin’s multiple mitochondrial levels of protection against mitochondrial Ca(2 +)-mediated permeability transition and beyond in rat brain astrocytes. J Pineal Res 48:20–38. https://doi.org/10.1111/j.1600-079X.2009.00721.x

    Article  CAS  PubMed  Google Scholar 

  194. Jou MJ, Peng TI, Reiter RJ (2019) Protective stabilization of mitochondrial permeability transition and mitochondrial oxidation during mitochondrial Ca2 + stress by melatonin’s cascade metabolites C3-OHM and AFMK in RBA1 astrocytes. J Pineal Res 66:e12538. https://doi.org/10.1111/jpi.12538

    Article  CAS  PubMed  Google Scholar 

  195. Jakaria M, Park SY, Haque ME, Karthivashan G, Kim IS, Ganesan P, Choi DK (2018) Neurotoxic agent-induced injury in neurodegenerative disease model: focus on involvement of glutamate receptors. Front Mol Neurosci 11:307. https://doi.org/10.3389/fnmol.2018.00307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Kang NH, Carriere CH, Bahna SG, Niles LP (2016) Altered melatonin MT1 receptor expression in the ventral midbrain following 6-hydroxydopamine lesions in the rat medial forebrain bundle. Brain Res 1652:89–96. https://doi.org/10.1016/j.brainres.2016.09.036

    Article  CAS  PubMed  Google Scholar 

  197. Moradkhani F, Moloudizargari M, Fallah M, Asghari N, Heidari Khoei H, Asghari MH (2019) Immunoregulatory role of melatonin in cancer. J Cell Physiol 235(2):745–757. https://doi.org/10.1002/jcp.29036

    Article  CAS  PubMed  Google Scholar 

  198. Weissová K, Škrabalová J, Skálová K, Červená K, Bendová Z, Miletínová E, Kopřivová J, Šonka K, Dudysová D, Bartoš A, Bušková J (2018) Circadian rhythms of melatonin and peripheral clock gene expression in idiopathic REM sleep behavior disorder. Sleep Med 52:1–6. https://doi.org/10.1016/j.sleep.2018.07.019

    Article  PubMed  Google Scholar 

  199. Abad VC, Guilleminault C (2018) Insomnia in Elderly Patients: Recommendations for Pharmacological Management. Drugs Aging 35:791–817. https://doi.org/10.1007/s40266-018-0569-8

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Conception of this manuscript was carried out under research funded by the following projects: Ministerio de Economía y Competitividad (BFU2016-79259-R) and Junta de Extremadura-FEDER (IB16006; GR18070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Gonzalez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Special issue: In honor of Professor Juan Bolanos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzalez, A. Antioxidants and Neuron-Astrocyte Interplay in Brain Physiology: Melatonin, a Neighbor to Rely on. Neurochem Res 46, 34–50 (2021). https://doi.org/10.1007/s11064-020-02972-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-02972-w

Keywords

Navigation