Skip to main content

Advertisement

Log in

Transglutaminases Derived from Astrocytes Accelerate Amyloid β Aggregation

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Activation of astrocytes has been observed in neurodegenerative diseases including Alzheimer’s disease (AD). Transglutaminase (TG) is a crosslinking enzyme and contributes to cell adhesion, cytoskeleton construct, extracellular matrix formation, and so on. One of the isozymes, tissue-type TG (TG2) is reported to be activated in AD. Moreover, amyloid β1−42 (Aβ), which is aggregated and the aggregation is detected as characteristic pathology in AD brain, is known to be a substrate of TG2. However, contribution and derivation of TGs in brain for Aβ aggregation remain to be clarified. In the present study, we examined the effects of cultured astrocytes prepared from rat embryonic brain cortex on Aβ aggregation. When freshly prepared Aβ was added to cultured astrocytes for 7 days, Aβ monomer decreased and Aβ oligomer unchanged. On the other hand, when Aβ monomer was diluted with astrocytes conditioned medium, Aβ oligomer increased time-dependently, and an inhibitor of TGs, cystamine, blocked it. Furthermore, when cultured astrocytes were stimulated with aggregated Aβ, TG2 expression significantly increased. These results suggest that astrocytes could uptake Aβ monomer to eliminate from brain; however, TGs derived from astrocytes might accelerate Aβ aggregation and the aggregated Aβ might enhance TG2 in astrocytes as a vicious cycle in pathological conditions. Adequate control of TGs expression and function in astrocytes would be an important factor in AD pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Aβ:

Amyloid beta

ACM:

Astrocytes conditioned medium

AD:

Alzheimer’s disease

CNS:

Central nervous system

DMEM:

Dulbecco’s modified Eagle medium

FXIII:

Coagulation factor XIII

HRP:

Horseradish peroxidase

iNOS:

Inducible nitric oxide synthase

NF-κB:

Nuclear factor-kappa B

LPS:

Lipopolysaccharide

LRP:

Lipoprotein receptor related protein

RAGE:

Receptor of advanced glycation end product

TG:

Transglutaminase

TLR:

Toll-like receptor

References

  1. Anderson CM, Swanson RA (2000) Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia 32:1–14

    Article  CAS  PubMed  Google Scholar 

  2. Abbott NJ (2002) Astrocyte-endothelial interactions and blood-brain barrier permeability. J Anat 200:629–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Correale J, Villa A (2009) Cellular elements of the blood-brain barrier. Neurochem Res 34:2067–2077

    Article  CAS  PubMed  Google Scholar 

  4. Lee SY, Son DJ, Lee YK, Lee JW, Lee HJ, Yun YW, Ha TY, Hong JT (2006) Inhibitory effect of sesaminol glucosides on lipopolysaccharide-induced NF-κB activation and target gene expression in cultured rat astrocytes. Neurosci Res 56:204–212

    Article  CAS  PubMed  Google Scholar 

  5. McGeer PL, McGeer EG (1995) The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Res Rev 21:195–218

    Article  CAS  PubMed  Google Scholar 

  6. Liu RX, Huang C, Benett DA, Li H, Wang R (2016) The characteristics of astrocyte on Aβ clearance altered in Alzheimer’s disease were reversed by anti-inflammatory agent (+)-2-(1-hydroxyl-4-oxocyclohexyl) ethyl caffeate. Am J Transl Res 8(10):4082–4094

    PubMed  PubMed Central  Google Scholar 

  7. Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC, Yarasheski KE, Bateman RJ (2010) Decreased clearance of CNS amyloid-β in Alzheimer’s disease. Science 330(6012):1774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M (1998) Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA 95:6448–6453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Walsh DM, Hartley DM, Kusumoto Y, Fezoui Y, Condron MM, Lomakin A, Benedek GB, Selkoe DJ, Teplow DB (1999) Amyloid beta-protein fibrillogenesis. Structure and biological activity of protofibrillar intermediates. J Biol Chem 274(36):25945–25952

    Article  CAS  PubMed  Google Scholar 

  10. Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ (2002) Naturally secreted oligomers of amylid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535–539

    Article  CAS  PubMed  Google Scholar 

  11. Hoshi M, Sato M, Matsumoto S, Noguchi A, Yasutake K, Yoshida N, Sato K (2003) Spherical aggregates of beta-amyloid (amylospheroid) show high neurotoxicity and activate tau protein kinase I/glycogen synthase kinase-3beta. Proc Natl Acad Sci USA 100(11):6370–6375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, Glabe CG (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300(5618):486–489

    Article  CAS  PubMed  Google Scholar 

  13. Barghorn S, Nimmrich V, Striebinger A, Krantz C, Keller P, Janson B, Bahr M, Schmidt M, Bitner RS, Harlan J, Barlow E, Ebert U, Hillen H (2005) Globular amyloid beta-peptide oligomer - a homogenous and stable neuropathological protein in Alzheimer’s disease. J Neurochem 95:834–847

    Article  CAS  PubMed  Google Scholar 

  14. Lesné S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, Gallagher M, Ashe KH (2006) A specific amyloid-beta protein assembly in the brain impairs memory. Nature 440(7082):352–357

    Article  PubMed  Google Scholar 

  15. Geerts H (2004) NC-531 (Neurochem). Curr Opin Investig Drugs 5:95–100

    CAS  PubMed  Google Scholar 

  16. Baum L, Lam CW, Cheung SK, Kwok T, Lui V, Tsoh J, Lam L, Leung V, Hui E, Ng C, Woo J, Chiu HF, Goggins WB, Zee BC, Cheng KF, Fong CY, Wong A, Mok H, Chow MS, Ho PC, Ip SP, Ho CS, Yu XW, Lai CY, Chan MH, Szeto S, Chan IH, Mok V (2008) Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of curcumin in patients with Alzheimer disease. J Clin Psychopharmacol 28(1):110–113

    Article  PubMed  Google Scholar 

  17. Lannfelt L, Blennow K, Zetterberg H, Batsman S, Ames D, Harrison J (2008) Safety, efficacy, and biomarker findings of PBT2 in targeting Aβ as a modifying therapy for Alzheimer’s disease: a phase II a, double-blind, randomized, placebo-controlled trial. Lancet Neurol 7:779–786

    Article  CAS  PubMed  Google Scholar 

  18. Hartley DM, Zhao C, Speier AC, Woodard GA, Li S, Li Z, Walz T (2008) Transglutaminase induces protofibril-like amyloid beta-protein assemblies that are protease-resistant and inhibit long-term potentiation. J Biol Chem 283(24):16790–16800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. de Jager M, van der Wildt B, Schul E, Bol JG, van Duinen SG, Drunkarch B, Wilhelmus MM (2013) Tissue transglutaminase colocalizes with etracellular matrix proteins in cerebral amyloid angiopathy. Neurobiol Aging 34(4):1159–1169

    Article  PubMed  Google Scholar 

  20. Folk JE (1980) Transglutaminases. Ann Rev Biochem 49:517–531

    Article  CAS  PubMed  Google Scholar 

  21. Folk JE, Chung SI (1985) Transglutaminases. Methods Enzymol 113:358–375

    Article  CAS  PubMed  Google Scholar 

  22. Zhang J, Lesort M, Guttmann RP, Johnson, GVW. (1998) Modulation of the in situ activity of tissue transglutaminase by calcium and GTP. J Biol Chem 273(4):2288–2295

    Article  CAS  PubMed  Google Scholar 

  23. Griffin M, Casadio R, Bergamini CM (2002) Transglutaminases: nature’s biological glues. Biochem J 368:377–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jeitner TM, Muma NA, Battaile KP, Cooper, AJL. (2009) Transglutaminase activation in neurodegenerative diseases. Future Neurol 4:449–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Aeschlimann D, Thomazy V (2000) Protein crosslinking in assembly and remodeling of extracellular matrices: the role of transglutaminase. Connect Tissue Res 41:1–27

    Article  CAS  PubMed  Google Scholar 

  26. Fesus L, Piacentini M (2002) Transglutaminase 2: an enigmatic enzyme with diverse functions. Trends Biochem Sci 27(10):534–539

    Article  CAS  PubMed  Google Scholar 

  27. Wilhelmus, MMM., Dam A-M, Drukarch B (2008) Tissue transglutaminase: a novel pharmacological target in preventing toxic protein aggregation in neurodegenerative diseases. Eur J Pharmacol 585:464–472

    Article  CAS  PubMed  Google Scholar 

  28. Yamada T, Yoshiyama Y, Kawaguchi N, Ichinose A, Iwaki T, Hirose S, Jefferies WA (1998) Possible roles of transglutaminases in Alzheimer’s disease. Dement Geriatr Cogn Disord 9:103–110

    Article  CAS  PubMed  Google Scholar 

  29. Kim SY, Grant P, Lee JH, Pant HC, Steinert PM (1999) Differential expression of multiple transglutaminases in human brain increased expression and cross-linking by transglutaminases 1 and 2 in Alzheimer’s disease. J Biol Chem 274:30715–30721

    Article  CAS  PubMed  Google Scholar 

  30. Citron BA, SantaCruz KS, Davies, PJA., Festoff BW (2001) Intron-exon swapping of transglutaminase mRNA and neuronal Tau aggregation in Alzheimer’s disease. J Biol Chem 276:3295–3301

    Article  CAS  PubMed  Google Scholar 

  31. Takano K, Shiraiwa M, Moriyama M, Nakamura Y (2010) Transglutaminase 2 expression induced by lipopolysaccharide stimulation together with NO synthase induction in cultured astrocytes. Neurochem Int 57(7):812–818

    Article  CAS  PubMed  Google Scholar 

  32. Akiyama H, Kondo H, Ikeda K, Arai T, Kato M, McGleer PL (1995) Immnohistochemical detection of coagulation factor XIIIa in postmortem human brain tissue. Neurosci Lett 202:29–32

    Article  CAS  PubMed  Google Scholar 

  33. Bagyinszky E, Youn YC, An SS, Kim S (2014) The genetics of Alzheimer’s disease. J Clin Interv Aging 9:535–551

    Article  Google Scholar 

  34. Borchelt DR, Thinakaran G, Eckman CB (1996) Familial Alzheimer’s disease-linked presenilin 1 variants elevate Abeta1-42/1–40 ratio in vitro and in vivo. Neuron 17:1005–1013

    Article  CAS  PubMed  Google Scholar 

  35. Jones RS, Minogue AM, Connor TJ, Lynch MA (2013) Amyloid-β-induced astrocytic phagocytosis is mediated by CD36, CD47 and RAGE. J Neuroimmune Pharmacol 8(1):301–311

    Article  PubMed  Google Scholar 

  36. de Jager M, Boot MV, Bol JG, Brevé JJ, Jongenelen CA, Drukarch B, Wilhelmus MM (2016) The blood clotting Factor XIIIa forms unique complexes with amyloid-beta (Aβ) and colocalizes with deposited Aβ in cerebral amyloid angiopathy. Neuropathol Appl Neurobiol 42:255–272

    Article  PubMed  Google Scholar 

  37. Greenberg CS, Birckbichler PJ, Rice RH (1991) Transglutaminases: multifunctional cross-linking enzymes that stabilize tissues. FASEB J 5(15):3071–3077

    CAS  PubMed  Google Scholar 

  38. Akbar D, Jamal R (2016) Blood coagulation factor XIII and factor XIII deficiency. Blood Rev 30(6):461–475

    Article  Google Scholar 

  39. Sengupta U, Nilson AN, Kayed R (2016) The role of amyloid-β oligomers in toxicity, propagation, and immunotherapy. EBioMedicine 6:42–49

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yan SD, Chen X, Fu J, Chen M, Zhu H, Roher A, Slattery T, Zhao L, Nagashima M, Morser J, Migheli A, Nawroth P, Stern D, Schmidt AM (1996) RAGE and amyloid-β peptide neurotoxicity in Alzheimer’s disease. Nature 382:685–691

    Article  CAS  PubMed  Google Scholar 

  41. Yan SD, Fu J, Chen X, Zhu H, Al-Mohanna F, Collison K, Zhu A, Stern E, Saido T, Tohyama M, Ogawa S, Roher A, Stern D (1997) An intracellular protein that binds amyloid-beta peptide and mediates neurotoxicity in Alzheimer’s disease. Nature 389(6652):689–695

    Article  CAS  PubMed  Google Scholar 

  42. Balducci C, Frasca A, Zotti M, La Vitola P, Mhillaj E, Grigolo E, Iacobellis M, Grandi F, Messa M, Colombo L, Molteni M, Trabace L, Rossetti C, Salmona M, Forloni, G (2017) Toll-like receptor 4-dependent glial cell activation mediates the impairment in memory establishment induced by β-amyloid oligomers in an acute mouse model of Alzheimer’s disease. Brain Behav Immun 60:188–197

    Article  CAS  PubMed  Google Scholar 

  43. Behl C, Davis JB, Lesley R, Schubert D (1994) Hydrogen peroxide mediates amyloid β protein toxicity. Cell 77(6):817–827

    Article  CAS  PubMed  Google Scholar 

  44. Abe K, Saito H (2000) L-glutamate suppresses amyloid beta-protein-induced stellation of cultured rat cortical astrocytes. J Neurochem 74(1):280–286

    Article  CAS  PubMed  Google Scholar 

  45. Abe K, Saito H (2000) Amyloid beta neurotoxicity not mediated by the mitogen-activated protein kinase cascade in cultured rat hippocampal and cortical neurons. Neurosci Lett 292(1):1–4

    Article  CAS  PubMed  Google Scholar 

  46. Kangsadalampai S, Board PG (1998) The Val34Leu polymorphism in the A subunit of coagulation factor XIII contributes to the large normal range in activity and demonstrates that the activation peptide plays a role in catalytic activity. Blood 92(8):2766–2770

    CAS  PubMed  Google Scholar 

  47. Gerardino L, Papalep P, Gaetani E, Fioroni P, Pola R (2006) Coagulation factor XIII Val34Leu gene polymorphism and Alzheimer’s disease. Neurol Res 28(8):807–809

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by JSPS KAKENHI Grant Number JP15J12259 to K.K., JP26850209 to K.T., JP26450447 to M.M., and JP15K07768 to Y.N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsura Takano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawabe, K., Takano, K., Moriyama, M. et al. Transglutaminases Derived from Astrocytes Accelerate Amyloid β Aggregation. Neurochem Res 42, 2384–2391 (2017). https://doi.org/10.1007/s11064-017-2258-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2258-0

Keywords

Navigation