Skip to main content

Advertisement

Log in

Ammonia, Like K+, Stimulates the Na+, K+, 2 Cl Cotransporter NKCC1 and the Na+,K+-ATPase and Interacts with Endogenous Ouabain in Astrocytes

  • Overview
  • Published:
Neurochemical Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Brain edema during hepatic encephalopathy or acute liver failure as well as following brain ischemia has a multifactorial etiology, but it is a dangerous and occasionally life-threatening complication because the brain is enclosed in the rigid skull. During ischemia the extracellular K+ concentration increases to very high levels, which when energy becomes available during reperfusion stimulate NKCC1, a cotransporter driven by the transmembrane ion gradients established by the Na+,K+-ATPase and accumulating Na+, K+ and 2 Cl together with water. This induces pronounced astrocytic swelling under pathologic conditions, but NKCC1 is probably also activated, although to a lesser extent, during normal brain function. Redistribution of ions and water between extra- and intracellular phases does not create brain edema, which in addition requires uptake across the blood–brain barrier. During hepatic encephalopathy and acute liver failure a crucial factor is the close resemblance between K+ and NH4 + in their effects not only on NKCC1 and Na+,K+-ATPase but also on Na+,K+-ATPase-induced signaling by endogenous ouabains. These in turn activate production of ROS and nitrosactive agents which slowly sensitize NKCC1, explaining why cell swelling and brain edema generally are delayed under hyperammonemic conditions, although very high ammonia concentrations can cause immediate NKCC1 activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Norenberg MD (1998) Astroglial dysfunction in hepatic encephalopathy. Metab Brain Dis 13:319–335

    CAS  PubMed  Google Scholar 

  2. Vaquero J, Chung C, Blei AT (2003) Brain edema in acute liver failure. A window to the pathogenesis of hepatic encephalopathy. Ann Hepatol 2:12–22

    PubMed  Google Scholar 

  3. Bosoi CR, Rose CF (2013) Brain edema in acute liver failure and chronic liver disease: similarities and differences. Neurochem Int 62:446–457

    CAS  PubMed  Google Scholar 

  4. Rama Rao KV, Jayakumar AR, Norenberg MD (2014) Brain edema in acute liver failure: mechanisms and concepts. Metab Brain Dis (in press)

  5. Gropman AL (2012) Patterns of brain injury in inborn errors of metabolism. Semin Pediatr Neurol 19:203–210

    PubMed Central  PubMed  Google Scholar 

  6. Ho ML, Rojas R, Eisenberg RL (2012) Cerebral edema. AJR Am J Roentgenol 199:W258–W273

    PubMed  Google Scholar 

  7. Matsuoka Y, Hossmann KA (1982) Brain tissue osmolality after middle cerebral artery occlusion in cats. Exp Neurol 77:599–611

    CAS  PubMed  Google Scholar 

  8. Jayakumar AR, Liu M, Moriyama M, Ramakrishnan R, Forbush B III, Reddy PV, Norenberg MD (2008) Na-K-Cl Cotransporter-1 in the mechanism of ammonia-induced astrocyte swelling. J Biol Chem 283:33874–33882

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Jayakumar AR, Panickar KS, Curtis KM, Tong XY, Moriyama M, Norenberg MD (2011) Na-K-Cl cotransporter-1 in the mechanism of cell swelling in cultured astrocytes after fluid percussion injury. J Neurochem 117:437–448

    CAS  PubMed  Google Scholar 

  10. Jayakumar AR, Norenberg MD (2010) The Na-K-Cl Co-transporter in astrocyte swelling. Metab Brain Dis 25:31–38

    CAS  PubMed  Google Scholar 

  11. Kelly T, Kafitz KW, Roderigo C, Rose CR (2009) Ammonium-evoked alterations in intracellular sodium and pH reduce glial glutamate transport activity. Glia 57:921–934

    PubMed  Google Scholar 

  12. Kelly T, Rose CR (2010) Ammonium influx pathways into astrocytes and neurones of hippocampal slices. J Neurochem 115:1123–1136

    CAS  PubMed  Google Scholar 

  13. Walz W, Hertz L (1984) Intense furosemide-sensitive potassium accumulation in astrocytes in the presence of pathologically high extracellular potassium levels. J Cereb Blood Flow Metab 4:301–304

    CAS  PubMed  Google Scholar 

  14. Hertz L, Bender AS, Woodbury DM, White HS (1989) Potassium-stimulated calcium uptake in astrocytes and its potent inhibition by nimodipine. J Neurosci Res 22:209–215

    CAS  PubMed  Google Scholar 

  15. Chow SY, Yen-Chow YC, White HS, Hertz L, Woodbury DM (1991) Effects of potassium on anion and cation contents of primary cultures of mouse astrocytes and neurons. Neurochem Res 16:1275–1283

    CAS  PubMed  Google Scholar 

  16. White HS, Chow SY, Yen-Chow YC, Woodbury DM (1992) Effect of elevated potassium on the ion content of mouse astrocytes and neurons. Can J Physiol Pharmacol 70(Suppl):S263–S268

    CAS  PubMed  Google Scholar 

  17. Xu J, Song D, Xue Z, Gu L, Hertz L, Peng L (2013) Requirement of glycogenolysis for uptake of increased extracellular K+ in astrocytes: potential implications for K+ homeostasis and glycogen usage in brain. Neurochem Res 38:472–485

    CAS  PubMed  Google Scholar 

  18. Walz W, Kimelberg HK (1985) Differences in cation transport properties of primary astrocyte cultures from mouse and rat brain. Brain Res 340:333–340

    CAS  PubMed  Google Scholar 

  19. Kimelberg HK, Frangakis MV (1985) Furosemide- and bumetanide-sensitive ion transport and volume control in primary astrocyte cultures from rat brain. Brain Res 361:125–134

    CAS  PubMed  Google Scholar 

  20. Larsen BR, Assentoft M, Cotrina ML, Hua SZ, Nedergaard M, Kaila K, Voipio J, Macaulay N (2014) Contributions of the Na+/K+-ATPase, NKCC1, and Kir4.1 to hippocampal K+ clearance and volume responses. Glia 62:608–622

    PubMed  Google Scholar 

  21. Pedersen SF, O’Donnell ME, Anderson SE, Cala PM (2006) Physiology and pathophysiology of Na+/H+ exchange and Na+ -K+ -2Cl cotransport in the heart, brain, and blood. Am J Physiol Regul Integr Comp Physiol 291:R1–R25

    CAS  PubMed  Google Scholar 

  22. Kurtz I, Balaban RS (1986) Ammonium as a substrate for Na+-K+-ATPase in rabbit proximal tubules. Am J Physiol 250:F497–F502

    CAS  PubMed  Google Scholar 

  23. Rossi B, Gache C, Lazdunski M (1978) Specificity and interactions at the cationic sites of the axonal (Na+, K+)-activated adenosinetriphosphatase. Eur J Biochem 85:561–570

    CAS  PubMed  Google Scholar 

  24. Skou JC, Esmann M (1992) The Na, K-ATPase. J Bioenerg Biomembr 24:249–261

    CAS  PubMed  Google Scholar 

  25. Wall SM (1996) Ammonium transport and the role of the Na, K-ATPase. Miner Electrolyte Metab 22:311–317

    CAS  PubMed  Google Scholar 

  26. Garçon DP, Lucena MN, Pinto MR, Fontes CF, McNamara JC, Leone FA (2012) Synergistic stimulation by potassium and ammonium of K+-phosphatase activity in gill microsomes from the crab Callinectes ornatus acclimated to low salinity: novel property of a primordial pump. Arch Biochem Biophys 530:55–63

    PubMed  Google Scholar 

  27. Kala G, Kumarathasan R, Peng L, Leenen FH, Hertz L (2000) Stimulation of Na+, K+-ATPase activity, increase in potassium uptake, and enhanced production of ouabain-like compounds in ammonia-treated mouse astrocytes. Neurochem Int 36:203–211

    CAS  PubMed  Google Scholar 

  28. Hannemann A, Flatman PW (2011) Phosphorylation and transport in the Na-K-2Cl cotransporters, NKCC1 and NKCC2A, compared in HEK-293 cells. PLoS ONE 6:e17992

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Epstein FH, Silva P (1985) Na-K-Cl cotransport in chloride-transporting epithelia. Ann N Y Acad Sci 456:187–197

    CAS  PubMed  Google Scholar 

  30. Dawson DC (1987) Cellular mechanisms for K transport across epithelial cell layers. Semin Nephrol 7:185–192

    CAS  PubMed  Google Scholar 

  31. Hamann S, Herrera-Perez JJ, Zeuthen T, Alvarez-Leefmans FJ (2010) Cotransport of water by the Na+-K+-2Cl cotransporter NKCC1 in mammalian epithelial cells. J Physiol 588:4089–4101

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Marty S, Wehrlé R, Alvarez-Leefmans FJ, Gasnier B, Sotelo C (2002) Postnatal maturation of Na+, K+, 2Cl cotransporter expression and inhibitory synaptogenesis in the rat hippocampus: an immunocytochemical analysis. Eur J Neurosci 15:233–245

    PubMed  Google Scholar 

  33. Deisz RA, Lehmann TN, Horn P, Dehnicke C, Nitsch R (2011) Components of neuronal chloride transport in rat and human neocortex. J Physiol 589:1317–1347

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Kanaka C, Ohno K, Okabe A, Kuriyama K, Itoh T, Fukuda A, Sato K (2001) The differential expression patterns of messenger RNAs encoding K-Cl cotransporters (KCC1,2) and Na-K-2Cl cotransporter (NKCC1) in the rat nervous system. Neuroscience 104:933–946

    CAS  PubMed  Google Scholar 

  35. Yan YP, Dempsey RJ, Sun D (2001) Na-K-Cl- cotransporter in rat focal cerebral ischemia. J Cereb Blood Flow Metab 21:711–721

    CAS  PubMed  Google Scholar 

  36. Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y, Lubischer JL, Krieg PA, Krupenko SA, Thompson WJ, Barres BA (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28:264–278

    CAS  PubMed  Google Scholar 

  37. Yan S, Chen Y, Dong M, Song W, Belcher SM, Wang HS (2011) Bisphenol A and 17β-estradiol promote arrhythmia in the female heart via alteration of calcium handling. PLoS One 6:e25455

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Hara H, Nagasawa H, Kogure K (1990) Nimodipine attenuates both ischaemia-induced brain oedema and mortality in a rat novel transient middle cerebral artery occlusion model. Acta Neurochir Suppl (Wien) 51:251–253

    CAS  Google Scholar 

  39. Campbell CA, Mackay KB, Patel S, King PD, Stretton JL, Hadingham SJ, Hamilton TC (1997) Effects of isradipine, an L-type calcium channel blocker on permanent and transient focal cerebral ischemia in spontaneously hypertensive rats. Exp Neurol 148:45–50

    CAS  PubMed  Google Scholar 

  40. Deguchi K, Yamashita T, Abe K (2007) Prevention of neuronal damage by calcium channel blockers with antioxidative effects after transient focal ischemia in rats. Brain Res 1176:143–150

    PubMed  Google Scholar 

  41. Ito Y, Araki N (2010) Calcium antagonists: current and future applications based on new evidence. Neuroprotective effect of calcium antagonists. Clin Calcium 20:83–88

    CAS  PubMed  Google Scholar 

  42. Cai L, Du T, Song D, Li B, Hertz L, Peng L (2011) Astrocyte ERK phosphorylation precedes K+-induced swelling but follows hypotonicity-induced swelling. Neuropathology 31:250–264

    PubMed  Google Scholar 

  43. Lang F, Ritter M, Wöll E, Weiss H, Häussinger D, Hoflacher J, Maly K, Grunicke H (1992) Altered cell volume regulation in ras oncogene expressing NIH fibroblasts. Pflugers Arch 420:424–427

    CAS  PubMed  Google Scholar 

  44. Lytle C, Forbush B III (1992) The Na-K-Cl cotransport protein of shark rectal gland. II. Regulation by direct phosphorylation. J Biol Chem 267:25438–25443

    CAS  PubMed  Google Scholar 

  45. Kurihara K, Moore-Hoon ML, Saitoh M, Turner RJ (1999) Characterization of a phosphorylation event resulting in upregulation of the salivary Na+-K+-2Cl cotransporter. Am J Physiol 277:C1184–C1193

    CAS  PubMed  Google Scholar 

  46. Vitari AC, Thastrup J, Rafiqi FH, Deak M, Morrice NA, Karlsson HK, Alessi DR (2006) Functional interactions of the SPAK/OSR1 kinases with their upstream activator WNK1 and downstream substrate NKCC1. Biochem J 397(1):223–231

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Delpire E, Gagnon KB (2008) SPAK and OSR1: STE20 kinases involved in the regulation of ion homoeostasis and volume control in mammalian cells. Biochem J 409:321–331

    CAS  PubMed  Google Scholar 

  48. Lothman E, Lamanna J, Cordingley G, Rosenthal M, Somjen G (1975) Responses of electrical potential, potassium levels, and oxidative metabolic activity of the cerebral neocortex of cats. Brain Res 88:15–36

    CAS  PubMed  Google Scholar 

  49. Hansen AJ (1978) The extracellular potassium concentration in brain cortex following ischemia in hypo- and hyperglycemic rats. Acta Physiol Scand 102:324–329

    CAS  PubMed  Google Scholar 

  50. Hansen AJ, Olsen CE (1980) Brain extracellular space during spreading depression and ischemia. Acta Physiol Scand 108:355–365

    CAS  PubMed  Google Scholar 

  51. Zadunaisky JA, Curran PF (1963) Sodium fluxes in isolated frog brain. Am J Physiol 205:949–956

    CAS  PubMed  Google Scholar 

  52. Bourke RS, Nelson KM (1972) Further studies on the K+- dependent swelling of primate cerebral cortex in vivo: the enzymatic basis of the K+- dependent transport of chloride. J Neurochem 19:663–685

    CAS  PubMed  Google Scholar 

  53. Pappius HM, Elliott KA (1956) Water distribution in incubated slices of brain and other tissues. Can J Biochem Physiol 34:1007–1022

    CAS  PubMed  Google Scholar 

  54. Bourke RS (1969) Studies of the development and subsequent reduction of swelling of mammalian cerebral cortex under isosmotic conditions in vitro. Exp Brain Res 8:232–248

    CAS  PubMed  Google Scholar 

  55. Lund-Andersen H, Hertz L (1970) Effects of potassium content in brain-cortex slices from adult rats. Exp Brain Res 11:199–212

    CAS  PubMed  Google Scholar 

  56. Boyle PJ, Conway EJ (1941) Potassium accumulation in muscle and associated changes. J Physiol 100:1–63

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Bourke RS, Kimelberg HK, Nelson LR (1976) The effects of temperature and inhibitors on HCO3-stimulated swelling and ion uptake of monkey cerebral cortex. Brain Res 105:309–323

    CAS  PubMed  Google Scholar 

  58. Moller M, Mollgård K, Lund-Andersen H, Hertz L (1974) Concordance between morphological and biochemical estimates of fluid spaces in rat brain cortex slices. Exp Brain Res 21:299–314

    CAS  PubMed  Google Scholar 

  59. Zeuthen T, Macaulay N (2012) Cotransport of water by Na+-K+-2Cl cotransporters expressed in Xenopus oocytes: NKCC1 versus NKCC2. J Physiol 590:1139–1154

    PubMed Central  CAS  PubMed  Google Scholar 

  60. Schousboe A (1972) Development of potassium effects on ion concentrations and indicator spaces in rat brain-cortex slices during postnatal ontogenesis. Exp Brain Res 15:521–531

    CAS  PubMed  Google Scholar 

  61. Cragoe EJ Jr, Gould NP, Woltersdorf OW Jr, Ziegler C, Bourke RS, Nelson LR, Kimelberg HK, Waldman JB, Popp AJ, Sedransk N (1982) Agents for the treatment of brain injury. 1. (Aryloxy)alkanoic acids. J Med Chem 25:567–579

    CAS  PubMed  Google Scholar 

  62. Pond BB, Galeffi F, Ahrens R, Schwartz-Bloom RD (2004) Chloride transport inhibitors influence recovery from oxygen–glucose deprivation-induced cellular injury in adult hippocampus. Neuropharmacology 47:253–262

    CAS  PubMed  Google Scholar 

  63. Kahle KT, Simard JM, Staley KJ, Nahed BV, Jones PS, Sun D (2009) Molecular mechanisms of ischemic cerebral edema: role of electroneutral ion transport. Physiology (Bethesda) 24:257–265

    CAS  Google Scholar 

  64. Khanna A, Kahle KT, Walcott BP, Gerzanich V, Simard JM (2014) Disruption of ion homeostasis in the neurogliovascular unit underlies the pathogenesis of ischemic cerebral edema. Transl Stroke Res 5:3–16

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Lenart B, Kintner DB, Shull GE, Sun D (2004) Na-K-Cl cotransporter-mediated intracellular Na+ accumulation affects Ca2+ signaling in astrocytes in an in vitro ischemic model. J Neurosci 24:9585–9597

    CAS  PubMed  Google Scholar 

  66. Walz W, Wuttke W, Hertz L (1984) Astrocytes in primary cultures: membrane potential characteristics reveal exclusive potassium conductance and potassium accumulator properties. Brain Res 292:367–374

    CAS  PubMed  Google Scholar 

  67. Ransom CB, Sontheimer H (1995) Biophysical and pharmacological characterization of inwardly rectifying K+ currents in rat spinal cord astrocytes. J Neurophysiol 73:333–346

    CAS  PubMed  Google Scholar 

  68. Hertz L, Kjeldsen CS (1985) Functional role of the potassium-induced stimulation of oxygen uptake in brain slices studied with cesium as a probe. J Neurosci Res 14:83–93

    CAS  PubMed  Google Scholar 

  69. Newman EA (1989) Potassium conductance block by barium in amphibian Müller cells. Brain Res 498:308–314

    CAS  PubMed  Google Scholar 

  70. Chen Y, McNeill JR, Hajek I, Hertz L (1992) Effect of vasopressin on brain swelling at the cellular level: do astrocytes exhibit a furosemide–vasopressin-sensitive mechanism for volume regulation? Can J Physiol Pharmacol 70(Suppl):S367–S373

    CAS  PubMed  Google Scholar 

  71. Hertz L (1979) Inhibition by barbiturates of an intense net uptake of potassium into astrocytes. Neuropharmacology 18:629–632

    CAS  PubMed  Google Scholar 

  72. Kostyuk PG (1984) Metabolic control of ionic channels in the neuronal membrane. Neuroscience 13:983–989

    CAS  PubMed  Google Scholar 

  73. Xiong ZQ, Stringer JL (2000) Sodium pump activity, not glial spatial buffering, clears potassium after epileptiform activity induced in the dentate gyrus. J Neurophysiol 83:1443–1451

    CAS  PubMed  Google Scholar 

  74. Hernández-Morales M, García-Colunga J (2009) Effects of nicotine on K+ currents and nicotinic receptors in astrocytes of the hippocampal CA1 region. Neuropharmacology 56:975–983

    PubMed  Google Scholar 

  75. Hertz L, Xu J, Song D, Du T, Li B, Yan E, Peng L (2014) Astrocytic glycogenolysis: mechanisms and functions. Metab Brain Dis (in press)

  76. Hertz L, Xu J, Peng L (2014) Glycogenolysis and purinergic signaling. In: Parpura V, Schousboe A, Verkhratsky A (ed) Glutamate and ATP at interface of metabolism and signaling in the brain. Springer, Berlin (in press)

  77. Wang F, Smith NA, Xu Q, Fujita T, Baba A, Matsuda T, Takano T, Bekar L, Nedergaard M (2012) Astrocytes modulate neural network activity by Ca2+-dependent uptake of extracellular K+. Sci Signal 5:ra26

    PubMed Central  PubMed  Google Scholar 

  78. Rangroo Thrane V, Thrane AS, Wang F, Cotrina ML, Smith NA, Chen M, Xu Q, Kang N, Fujita T, Nagelhus EA, Nedergaard M (2013) Ammonia triggers neuronal disinhibition and seizures by impairing astrocyte potassium buffering. Nat Med 19:1643–1648

    PubMed  Google Scholar 

  79. Himwich HE, Bernstein AO, Fazekas JF, Herrlich HC, Rich E (1942) The metabolic effects of potassium, temperature, methylene blue and paraphenylenediamine on infant and adult brain. Am J Physiol 137:327–330

    CAS  Google Scholar 

  80. Holtzman D, Olson J, Zamvil S, Nguyen H (1982) Maturation of potassium-stimulated respiration in rat cerebral cortical slices. J Neurochem 39:274–276

    CAS  PubMed  Google Scholar 

  81. Hertz L, Schou M (1962) Univalent cations and the respiration of brain-cortex slices. Biochem J 85:93–104

    PubMed Central  CAS  PubMed  Google Scholar 

  82. Dickens F, Greville GD (1935) The metabolism of normal and tumour tissue: Neutral salt effects. Biochem J 29:1468–1483

  83. Badar-Goffer RS, Ben-Yoseph O, Bachelard HS, Morris PG (1992) Neuronal-glial metabolism under depolarizing conditions. A 13C-n.m.r. study. Biochem J 282:225–230

    PubMed Central  CAS  PubMed  Google Scholar 

  84. Hertz L, Peng L, Kjeldsen CC, O’Dowd BS, Dienel GA (2004) Ion, transmitter and drug effects on energy metabolism in astrocytes. In: Hertz L (ed) Non-neuronal cells of the nervous system: function and dysfunction. Elsevier, Amsterdam, pp 435–460

    Google Scholar 

  85. Ashford CA (1934) Glycolysis in brain tissue. Biochem J 28:2229–2236

    PubMed Central  CAS  PubMed  Google Scholar 

  86. Hertz L (1966) Neuroglial localization of potassium and sodium effects on respiration in brain. J Neurochem 13:1373–1387

    CAS  PubMed  Google Scholar 

  87. Hertz L, Dittmann L, Mandel P (1973) K+ induced stimulation of oxygen uptake in cultured cerebral glial cells. Brain Res 60:517–520

    CAS  PubMed  Google Scholar 

  88. Hertz E, Hertz L (1979) Polarographic measurement of oxygen uptake by astrocytes in primary cultures using the tissue-culture flask as the respirometer chamber. In Vitro 15:429–436

    CAS  PubMed  Google Scholar 

  89. Allert N, Köller H, Siebler M (1998) Ammonia-induced depolarization of cultured rat cortical astrocytes. Brain Res 782:261–270

    CAS  PubMed  Google Scholar 

  90. Stephan J, Haack N, Kafitz KW, Durry S, Koch D, Hochstrate P, Seifert G, Steinhäuser C, Rose CR (2012) Kir4.1 channels mediate a depolarization of hippocampal astrocytes under hyperammonemic conditions in situ. Glia 60:965–978

    PubMed  Google Scholar 

  91. Aickin CC, Deisz RA, Lux HD (1982) Ammonium action on post-synaptic inhibition in crayfish neurones: implications for the mechanism of chloride extrusion. J Physiol 329:319–339

    PubMed Central  CAS  PubMed  Google Scholar 

  92. Moser H (1987) Electrophysiological evidence for ammonium as a substitute for potassium in activating the sodium pump in a crayfish sensory neuron. Can J Physiol Pharmacol 65:141–145

    CAS  PubMed  Google Scholar 

  93. Sørensen M, Keiding S (2007) New findings on cerebral ammonia uptake in HE using functional 13N-ammonia PET. Metab Brain Dis 22:277–284

    PubMed  Google Scholar 

  94. Norenberg MD (1977) A light and electron microscopic study of experimental portal-systemic (ammonia) encephalopathy. Progression and reversal of the disorder. Lab Invest 36:618–627

    CAS  PubMed  Google Scholar 

  95. Traber PG, Dal Canto M, Ganger DR, Blei AT (1987) Electron microscopic evaluation of brain edema in rabbits with galactosamine-induced fulminant hepatic failure: ultrastructure and integrity of the blood-brain barrier. Hepatology 7:1272–1277

    CAS  PubMed  Google Scholar 

  96. Swain MS, Blei AT, Butterworth RF, Kraig RP (1991) Intracellular pH rises and astrocytes swell after portacaval anastomosis in rats. Am J Physiol 261:R1491–R1496

    PubMed Central  CAS  PubMed  Google Scholar 

  97. Takahashi H, Koehler RC, Brusilow SW, Traystman RJ (1991) Inhibition of brain glutamine accumulation prevents cerebral edema in hyperammonemic rats. Am J Physiol 261:H825–H829

    CAS  PubMed  Google Scholar 

  98. Martinez-Hernandez A, Bell KP, Norenberg MD (1977) Glutamine synthetase: glial localization in brain. Science 195:1356–1358

    CAS  PubMed  Google Scholar 

  99. Norenberg MD, Martinez-Hernandez A (1979) Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res 161:303–310

    CAS  PubMed  Google Scholar 

  100. Anlauf E, Derouiche A (2013) Glutamine synthetase as an astrocytic marker: its cell type and vesicle localization. Front Endocrinol (Lausanne) 4:144

    Google Scholar 

  101. Blei AT, Olafsson S, Therrien G, Butterworth RF (1994) Ammonia-induced brain edema and intracranial hypertension in rats after portacaval anastomosis. Hepatology 19:1437–1444

    CAS  PubMed  Google Scholar 

  102. Norenberg MD, Baker L, Norenberg LO, Blicharska J, Bruce-Gregorios JH, Neary JT (1991) Ammonia-induced astrocyte swelling in primary culture. Neurochem Res 16:833–836

    CAS  PubMed  Google Scholar 

  103. Dai H, Song D, Xu J, Li B, Hertz L, Peng L (2013) Ammonia-induced Na, K-ATPase/ouabain-mediated EGF receptor transactivation, MAPK/ERK and PI3K/AKT signaling and ROS formation cause astrocyte swelling. Neurochem Int 63:610–625

    CAS  PubMed  Google Scholar 

  104. Ganz R, Swain M, Traber P, DalCanto M, Butterworth RF, Blei AT (1989) Ammonia-induced swelling of rat cerebral cortical slices: implications for the pathogenesis of brain edema in acute hepatic failure. Metab Brain Dis 4:213–223

    CAS  PubMed  Google Scholar 

  105. Jayakumar AR, Valdes V, Norenberg MD (2011) The Na-K-Cl cotransporter in the brain edema of acute liver failure. J Hepatol 54:272–278

    CAS  PubMed  Google Scholar 

  106. Zielińska M, Hilgier W, Law RO, Goryński P, Albrecht J (1999) Effects of ammonia in vitro on endogenous taurine efflux and cell volume in rat cerebrocortical minislices: influence of inhibitors of volume-sensitive amino acid transport. Neuroscience 91:631–638

    PubMed  Google Scholar 

  107. Back A, Tupper KY, Bai T, Chiranand P, Goldenberg FD, Frank JI, Brorson JR (2011) Ammonia-induced brain swelling and neurotoxicity in an organotypic slice model. Neurol Res 33:1100–1108

    PubMed Central  CAS  PubMed  Google Scholar 

  108. Xue Z, Li B, Gu L, Hu X, Li M, Butterworth RF, Peng L (2010) Increased Na, K-ATPase alpha2 isoform gene expression by ammonia in astrocytes and in brain in vivo. Neurochem Int 57:395–403

    CAS  PubMed  Google Scholar 

  109. Haas M, Wang H, Tian J, Xie Z (2002) Src-mediated inter-receptor cross-talk between the Na+/K+-ATPase and the epidermal growth factor receptor relays the signal from ouabain to mitogen-activated protein kinases. J Biol Chem 277:18694–18702

    CAS  PubMed  Google Scholar 

  110. Ferrari P, Ferrandi M, Valentini G, Bianchi G (2006) Rostafuroxin: an ouabain antagonist that corrects renal and vascular Na+-K+- ATPase alterations in ouabain and adducin-dependent hypertension. Am J Physiol Regul Integr Comp Physiol 290:R529–R535

    CAS  PubMed  Google Scholar 

  111. Bai Y, Morgan EE, Giovannucci DR, Pierre SV, Philipson KD, Askari A, Liu L (2013) Different roles of the cardiac Na+/Ca2+-exchanger in ouabain-induced inotropy, cell signaling, and hypertrophy. Am J Physiol Heart Circ Physiol 304:H427–H435

    PubMed Central  CAS  PubMed  Google Scholar 

  112. Hawes BE, Luttrell LM, van Biesen T, Lefkowitz RJ (1996) Phosphatidylinositol 3-kinase is an early intermediate in the G beta gamma-mediated mitogen-activated protein kinase signaling pathway. J Biol Chem 271:12133–12136

    CAS  PubMed  Google Scholar 

  113. Liu L, Ivanov AV, Gable ME, Jolivel F, Morrill GA, Askari A (2011) Comparative properties of caveolar and noncaveolar preparations of kidney Na+/K+-ATPase. Biochemistry 50:8664–8673

    PubMed Central  CAS  PubMed  Google Scholar 

  114. Nakata S, Tsutsui M, Shimokawa H, Tamura M, Tasaki H, Morishita T, Suda O, Ueno S, Toyohira Y, Nakashima Y, Yanagihara N (2005) Vascular neuronal NO synthase is selectively upregulated by platelet-derived growth factor: involvement of the MEK/ERK pathway. Arterioscler Thromb Vasc Biol 25:2502–2508

    CAS  PubMed  Google Scholar 

  115. Gan XT, Hunter JC, Huang C, Xue J, Rajapurohitam V, Javadov S, Karmazyn M (2012) Ouabain increases iNOS-dependent nitric oxide generation which contributes to the hypertrophic effect of the glycoside: possible role of peroxynitrite formation. Mol Cell Biochem 363:323–333

    CAS  PubMed  Google Scholar 

  116. Liu J, Tian J, Haas M, Shapiro JI, Askari A, Xie Z (2000) Ouabain interaction with cardiac Na+/K+-ATPase initiates signal cascades independent of changes in intracellular Na+ and Ca2+ concentrations. J Biol Chem 275:27838–27844

    CAS  PubMed  Google Scholar 

  117. Semplicini A, Serena L, Valle R, Ceolotto G, Felice M, Fontebasso A, Pessina AC (1995) Ouabain-inhibiting activity of aldosterone antagonists. Steroids 60:110–113

    CAS  PubMed  Google Scholar 

  118. Tian J, Shidyak A, Periyasamy SM, Haller S, Taleb M, El-Okdi N, Elkareh J, Gupta S, Gohara S, Fedorova OV, Cooper CJ, Xie Z, Malhotra D, Bagrov AY, Shapiro JI (2009) Spironolactone attenuates experimental uremic cardiomyopathy by antagonizing marinobufagenin. Hypertension 54:1313–1320

    PubMed Central  CAS  PubMed  Google Scholar 

  119. Ernest NJ, Sontheimer H (2007) Extracellular glutamine is a critical modulator for regulatory volume increase in human glioma cells. Brain Res 1144:231–238

    PubMed Central  CAS  PubMed  Google Scholar 

  120. Tarbit I, Perry EK, Perry RH, Blessed G, Tomlinson BE (1980) Hippocampal free amino acids in Alzheimer’s disease. J Neurochem 35:1246–1249

    CAS  PubMed  Google Scholar 

  121. Petroff OA, Errante LD, Rothman DL, Kim JH, Spencer DD (2002) Neuronal and glial metabolite content of the epileptogenic human hippocampus. Ann Neurol 52:635–642

    CAS  PubMed  Google Scholar 

  122. Mangia S, Tkác I, Gruetter R, Van De Moortele PF, Giove F, Maraviglia B, Uğurbil K (2006) Sensitivity of single-voxel 1H-MRS in investigating the metabolism of the activated human visual cortex at 7 T. Magn Reson Imaging 24:343–348

    PubMed  Google Scholar 

  123. Zhang NH, Laake J, Nagelhus E, Storm-Mathisen J, Ottersen OP (1991) Distribution of glutamine-like immunoreactivity in the cerebellum of rat and baboon (Papio anubis) with reference to the issue of metabolic compartmentation. Anat Embryol (Berl) 184:213–223

    CAS  Google Scholar 

  124. Albrecht J, Zielińska M, Norenberg MD (2010) Glutamine as a mediator of ammonia neurotoxicity: a critical appraisal. Biochem Pharmacol 80:1303–1308

    CAS  PubMed  Google Scholar 

  125. Huang R, Kala G, Murthy RK, Hertz L (1994) Effects of chronic exposure to ammonia on glutamate and glutamine interconversion and compartmentation in homogeneous primary cultures of mouse astrocytes. Neurochem Res 19:257–265

    CAS  PubMed  Google Scholar 

  126. Pichili VB, Rao KV, Jayakumar AR, Norenberg MD (2007) Inhibition of glutamine transport into mitochondria protects astrocytes from ammonia toxicity. Glia 55:801–809

    CAS  PubMed  Google Scholar 

  127. Schousboe A, Hertz L, Svenneby G, Kvamme E (1979) Phosphate activated glutaminase activity and glutamine uptake in primary cultures of astrocytes. J Neurochem 32:943–950

    CAS  PubMed  Google Scholar 

  128. Schousboe A, Westergaard N, Sonnewald U, Petersen SB, Huang R, Peng L, Hertz L (1993) Glutamate and glutamine metabolism and compartmentation in astrocytes. Dev Neurosci 15:359–366

    CAS  PubMed  Google Scholar 

  129. Rama Rao KV, Jayakumar AR, Norenberg MD (2003) Induction of the mitochondrial permeability transition in cultured astrocytes by glutamine. Neurochem Int 43:517–523

    CAS  PubMed  Google Scholar 

  130. Jayakumar AR, Rama Rao KV, Schousboe A, Norenberg MD (2004) Glutamine-induced free radical production in cultured astrocytes. Glia 46:296–301

    PubMed  Google Scholar 

  131. Zielińska M, Popek M, Albrecht J (2014) Roles of changes in active glutamine transport in brain edema development during hepatic encephalopathy: an emerging concept. Neurochem Res 39:599–604

    PubMed Central  PubMed  Google Scholar 

  132. Ruszkiewicz J, Fręśko I, Hilgier W, Albrecht J (2013) Decrease of glutathione content in the prefrontal cortical mitochondria of rats with acute hepatic encephalopathy: prevention by histidine. Metab Brain Dis 28:11–14

    CAS  PubMed  Google Scholar 

  133. Hertz L, Peng L, Dienel GA (2007) Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J Cereb Blood Flow Metab 27:219–249

    CAS  PubMed  Google Scholar 

  134. Whitelaw BS, Robinson MB (2013) Inhibitors of glutamate dehydrogenase block sodium-dependent glutamate uptake in rat brain membranes. Front Endocrinol (Lausanne) 4:123

    Google Scholar 

  135. McKenna MC (2013) Glutamate pays its own way in astrocytes. Front Endocrinol (Lausanne) 4:191

    Google Scholar 

  136. de Simone G, Chinali M, Mureddu GF, Cacciatore G, Lucci D, Latini R, Masson S, Vanasia M, Maggioni AP, Boccanelli A, AREA-in-CHF Investigators (2011) Effect of canrenone on left ventricular mechanics in patients with mild systolic heart failure and metabolic syndrome: the AREA-in-CHF study. Nutr Metab Cardiovasc Dis 21:783–791

    PubMed  Google Scholar 

  137. Derosa G, Bonaventura A, Bianchi L, Romano D, D’Angelo A, Fogari E, Maffioli P (2013) Effects of canrenone in patients with metabolic syndrome. Expert Opin Pharmacother 14:2161–2169

    CAS  PubMed  Google Scholar 

  138. Finn AM, Brown R, Sadée W (1977) Tissue distribution of 3H-canrenoate potassium in rabbits. J Pharm Sci 66:275–277

    CAS  PubMed  Google Scholar 

  139. Rose CF (2012) Ammonia-lowering strategies for the treatment of hepatic encephalopathy. Clin Pharmacol Ther 92:321–331

    CAS  PubMed  Google Scholar 

  140. Kala G, Hertz L (2005) Ammonia effects on pyruvate/lactate production in astrocytes–interaction with glutamate. Neurochem Int 47:4–12

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Grants No. 30670651 and No. 31171036 to LP from the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Song.

Additional information

Special Issue: In honor of Michael Norenberg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hertz, L., Peng, L. & Song, D. Ammonia, Like K+, Stimulates the Na+, K+, 2 Cl Cotransporter NKCC1 and the Na+,K+-ATPase and Interacts with Endogenous Ouabain in Astrocytes. Neurochem Res 40, 241–257 (2015). https://doi.org/10.1007/s11064-014-1352-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1352-9

Keywords

Navigation