Skip to main content

Advertisement

Log in

Continual Naringin Treatment Benefits the Recovery of Traumatic Brain Injury in Rats Through Reducing Oxidative and Inflammatory Alterations

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Naringin is neuroprotective in ischemia and other disease models. However, the effects of naringin are unknown after traumatic brain injury (TBI). The present study explored the role of naringin for neuroprotection in TBI rats. TBI was performed with the weight drop technique, and naringin was given orally at a dose of 100 mg/kg/day. The neurological scores, tissue edema, and oxidative stress/inflammation parameters [malondialdehyde (MDA), superoxide dismutase, nitric oxide, inducible nitric oxide synthase (iNOS), as well as interleukin-1β (IL-1β)] were measured. Compared to sham controls, TBI rats displayed obvious sensorimotor dysfunction, significant brain edema, and elevated oxidative and inflammatory molecules. Although a 7-day pre-treatment of naringin was unable to reverse these pathological changes, a 14-day continual treatment (7 days before and 7 days after the TBI) attenuated the increases in MDA and nitric oxide; enhanced the activation of superoxide dismutase; depressed the over-activation of iNOS; down-regulated the over-expression of IL-1β; and reduced the cortex edema. Additionally, the TBI-induced behavioral dysfunction was reduced. These results suggest that naringin treatment can attenuate cellular and histopathological alterations and improve the sensorimotor dysfunction of TBI rats, which may be partly due to the attenuation of oxidative and inflammatory damages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Corrigan JD, Selassie AW, Orman JA (2010) The epidemiology of traumatic brain injury. J Head Trauma Rehabil 25:72–80

    Article  PubMed  Google Scholar 

  2. Narayan RK, Michel ME, Ansell B et al (2002) Clinical trials in head injury. J Neurotrauma 19:503–557

    Article  PubMed Central  PubMed  Google Scholar 

  3. Boto GR, Gomez PA, De la Cruz J et al (2005) Overview of the recent clinical trials in severe head injury and analysis of their therapeutic failure. Neurocirugia (Astur) 16:39–49

    CAS  Google Scholar 

  4. Werner C, Engelhard K (2007) Pathophysiology of traumatic brain injury. Br J Anaesth 99:4–9

    Article  CAS  PubMed  Google Scholar 

  5. Cornelius C, Crupi R, Calabrese V et al (2013) Traumatic brain injury: oxidative stress and neuroprotection. Antioxid Redox Signal 19:836–853

    Article  CAS  PubMed  Google Scholar 

  6. Helmy A, De Simoni MG, Guilfoyle MR et al (2011) Cytokines and innate inflammation in the pathogenesis of human traumatic brain injury. Prog Neurobiol 95:352–372

    Article  CAS  PubMed  Google Scholar 

  7. Jafarian-Tehrani M, Louin G, Royo NC et al (2005) 1400 W, a potent selective inducible nos inhibitor, improves histopathological outcome following traumatic brain injury in rats. Nitric Oxide 12:61–69

    Article  CAS  PubMed  Google Scholar 

  8. Haber M, Abdel Baki SG, Grin’kina NM et al (2013) Minocycline plus n-acetylcysteine synergize to modulate inflammation and prevent cognitive and memory deficits in a rat model of mild traumatic brain injury. Exp Neurol 249:169–177

    Article  CAS  PubMed  Google Scholar 

  9. Chen SF, Hung TH, Chen CC et al (2007) Lovastatin improves histological and functional outcomes and reduces inflammation after experimental traumatic brain injury. Life Sci 81:288–298

    Article  CAS  PubMed  Google Scholar 

  10. Potts MB, Koh SE, Whetstone WD et al (2006) Traumatic injury to the immature brain: inflammation, oxidative injury, and iron-mediated damage as potential therapeutic targets. NeuroRx 3:143–153

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Meffre D, Pianos A, Liere P et al (2007) Steroid profiling in brain and plasma of male and pseudopregnant female rats after traumatic brain injury: analysis by gas chromatography/mass spectrometry. Endocrinology 148:2505–2517

    Article  CAS  PubMed  Google Scholar 

  12. Bramlett HM, Dietrich WD (2001) Neuropathological protection after traumatic brain injury in intact female rats versus males or ovariectomized females. J Neurotrauma 18:891–900

    Article  CAS  PubMed  Google Scholar 

  13. Wagner AK, Willard LA, Kline AE et al (2004) Evaluation of estrous cycle stage and gender on behavioral outcome after experimental traumatic brain injury. Brain Res 998:113–121

    Article  CAS  PubMed  Google Scholar 

  14. O’Connor CA, Cernak I, Vink R (2003) Interaction between anesthesia, gender, and functional outcome task following diffuse traumatic brain injury in rats. J Neurotrauma 20:533–541

    Article  PubMed  Google Scholar 

  15. Shahrokhi N, Haddad MK, Joukar S et al (2012) Neuroprotective antioxidant effect of sex steroid hormones in traumatic brain injury. Pak J Pharm Sci 25:219–225

    CAS  PubMed  Google Scholar 

  16. Ma J, Huang S, Qin S et al (2012) Progesterone for acute traumatic brain injury. Cochrane Database Syst Rev 10:CD008409

    PubMed  Google Scholar 

  17. Wright DW, Kellermann AL, Hertzberg VS et al (2007) Protect: a randomized clinical trial of progesterone for acute traumatic brain injury. Ann Emerg Med 49:391–402, 402.e391–392

    Google Scholar 

  18. Judd HL, Meldrum DR, Deftos LJ et al (1983) Estrogen replacement therapy: indications and complications. Ann Intern Med 98:195–205

    Article  CAS  PubMed  Google Scholar 

  19. Raafat AM, Hofseth LJ, Haslam SZ (2001) Proliferative effects of combination estrogen and progesterone replacement therapy on the normal postmenopausal mammary gland in a murine model. Am J Obstet Gynecol 184:340–349

    Article  CAS  PubMed  Google Scholar 

  20. Hwang SL, Shih PH, Yen GC (2012) Neuroprotective effects of citrus flavonoids. J Agric Food Chem 60:877–885

    Article  CAS  PubMed  Google Scholar 

  21. Mazur W (1998) Phytoestrogen content in foods. Baillieres Clin Endocrinol Metab 12:729–742

    Article  CAS  PubMed  Google Scholar 

  22. Rong W, Wang J, Liu X et al (2012) Naringin treatment improves functional recovery by increasing BDNF and VEGF expression, inhibiting neuronal apoptosis after spinal cord injury. Neurochem Res 37:1615–1623

    Article  CAS  PubMed  Google Scholar 

  23. Kumar A, Prakash A, Dogra S (2010) Naringin alleviates cognitive impairment, mitochondrial dysfunction and oxidative stress induced by d-galactose in mice. Food Chem Toxicol 48:626–632

    Article  CAS  PubMed  Google Scholar 

  24. Gaur V, Aggarwal A, Kumar A (2009) Protective effect of naringin against ischemic reperfusion cerebral injury: possible neurobehavioral, biochemical and cellular alterations in rat brain. Eur J Pharmacol 616:147–154

    Article  CAS  PubMed  Google Scholar 

  25. Golechha M, Chaudhry U, Bhatia J et al (2011) Naringin protects against kainic acid-induced status epilepticus in rats: evidence for an antioxidant, anti-inflammatory and neuroprotective intervention. Biol Pharm Bull 34:360–365

    Article  CAS  PubMed  Google Scholar 

  26. Dajas F, Rivera-Megret F, Blasina F et al (2003) Neuroprotection by flavonoids. Braz J Med Biol Res 36:1613–1620

    Article  CAS  PubMed  Google Scholar 

  27. Menze ET, Tadros MG, Abdel-Tawab AM et al (2012) Potential neuroprotective effects of hesperidin on 3-nitropropionic acid-induced neurotoxicity in rats. Neurotoxicology 33:1265–1275

    Article  CAS  PubMed  Google Scholar 

  28. Nones J, Spohr TCE, Gomes FC (2011) Hesperidin, a flavone glycoside, as mediator of neuronal survival. Neurochem Res 36:1776–1784

    Article  CAS  PubMed  Google Scholar 

  29. Heo HJ, Kim DO, Shin SC et al (2004) Effect of antioxidant flavanone, naringenin, from citrus junoson neuroprotection. J Agric Food Chem 52:1520–1525

    Article  CAS  PubMed  Google Scholar 

  30. Youdim KA, Qaiser MZ, Begley DJ et al (2004) Flavonoid permeability across an in situ model of the blood–brain barrier. Free Radic Biol Med 36:592–604

    Article  CAS  PubMed  Google Scholar 

  31. Benavente-Garcia O, Castillo J (2008) Update on uses and properties of citrus flavonoids: new findings in anticancer, cardiovascular, and anti-inflammatory activity. J Agric Food Chem 56:6185–6205

    Article  CAS  PubMed  Google Scholar 

  32. Youdim KA, Spencer JP, Schroeter H et al (2002) Dietary flavonoids as potential neuroprotectants. Biol Chem 383:503–519

    Article  CAS  PubMed  Google Scholar 

  33. Liu Y, Su WW, Wang S et al (2012) Naringin inhibits chemokine production in an LPS-induced RAW 264.7 macrophage cell line. Mol Med Rep 6:1343–1350

    CAS  PubMed  Google Scholar 

  34. Gopinath K, Sudhandiran G (2012) Naringin modulates oxidative stress and inflammation in 3-nitropropionic acid-induced neurodegeneration through the activation of nuclear factor-erythroid 2-related factor-2 signalling pathway. Neuroscience 227:134–143

    Article  CAS  PubMed  Google Scholar 

  35. Chanet A, Milenkovic D, Deval C et al (2012) Naringin, the major grapefruit flavonoid, specifically affects atherosclerosis development in diet-induced hypercholesterolemia in mice. J Nutr Biochem 23:469–477

    Article  CAS  PubMed  Google Scholar 

  36. Jagetia A, Jagetia GC, Jha S (2007) Naringin, a grapefruit flavanone, protects v79 cells against the bleomycin-induced genotoxicity and decline in survival. J Appl Toxicol 27:122–132

    Article  CAS  PubMed  Google Scholar 

  37. Prakash A, Shur B, Kumar A (2013) Naringin protects memory impairment and mitochondrial oxidative damage against aluminum-induced neurotoxicity in rats. Int J Neurosci 123:636–645

    Article  CAS  PubMed  Google Scholar 

  38. Fuhr U, Kummert AL (1995) The fate of naringin in humans: a key to grapefruit juice-drug interactions? Clin Pharmacol Ther 58:365–373

    Article  CAS  PubMed  Google Scholar 

  39. Zbarsky V, Datla KP, Parkar S et al (2005) Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson’s disease. Free Radic Res 39:1119–1125

    Article  CAS  PubMed  Google Scholar 

  40. Feeney DM, Boyeson MG, Linn RT et al (1981) Responses to cortical injury: I. Methodology and local effects of contusions in the rat. Brain Res 211:67–77

    Article  CAS  PubMed  Google Scholar 

  41. Schabitz WR, Berger C, Kollmar R et al (2004) Effect of brain-derived neurotrophic factor treatment and forced arm use on functional motor recovery after small cortical ischemia. Stroke 35:992–997

    Article  PubMed  Google Scholar 

  42. Hall ED, Vaishnav RA, Mustafa AG (2010) Antioxidant therapies for traumatic brain injury. Neurotherapeutics 7:51–61

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Bains M, Hall ED (2012) Antioxidant therapies in traumatic brain and spinal cord injury. Biochim Biophys Acta 1822:675–684

    Article  CAS  PubMed  Google Scholar 

  44. Ercan M, Inci S, Kilinc K et al (2001) Nimodipine attenuates lipid peroxidation during the acute phase of head trauma in rats. Neurosurg Rev 24:127–130

    Article  CAS  PubMed  Google Scholar 

  45. Kalayci M, Unal MM, Gul S et al (2011) Effect of coenzyme q10 on ischemia and neuronal damage in an experimental traumatic brain-injury model in rats. BMC Neurosci 12:75

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Urso ML, Clarkson PM (2003) Oxidative stress, exercise, and antioxidant supplementation. Toxicology 189:41–54

    Article  CAS  PubMed  Google Scholar 

  47. Cherian L, Hlatky R, Robertson CS (2004) Nitric oxide in traumatic brain injury. Brain Pathol 14:195–201

    Article  CAS  PubMed  Google Scholar 

  48. Clark RS, Kochanek PM, Schwarz MA et al (1996) Inducible nitric oxide synthase expression in cerebrovascular smooth muscle and neutrophils after traumatic brain injury in immature rats. Pediatr Res 39:784–790

    Article  CAS  PubMed  Google Scholar 

  49. Orihara Y, Ikematsu K, Tsuda R et al (2001) Induction of nitric oxide synthase by traumatic brain injury. Forensic Sci Int 123:142–149

    Article  CAS  PubMed  Google Scholar 

  50. Louin G, Marchand-Verrecchia C, Palmier B et al (2006) Selective inhibition of inducible nitric oxide synthase reduces neurological deficit but not cerebral edema following traumatic brain injury. Neuropharmacology 50:182–190

    Article  CAS  PubMed  Google Scholar 

  51. Gahm C, Holmin S, Wiklund PN et al (2006) Neuroprotection by selective inhibition of inducible nitric oxide synthase after experimental brain contusion. J Neurotrauma 23:1343–1354

    Article  PubMed  Google Scholar 

  52. Vavilala MS, Roberts JS, Moore AE et al (2001) The influence of inhaled nitric oxide on cerebral blood flow and metabolism in a child with traumatic brain injury. Anesth Analg 93:351–353, 353rd contents page

    Google Scholar 

  53. Goodman JC, Van M, Gopinath SP et al (2008) Pro-inflammatory and pro-apoptotic elements of the neuroinflammatory response are activated in traumatic brain injury. Acta Neurochir Suppl 102:437–439

    Article  CAS  PubMed  Google Scholar 

  54. White TE, Ford GD, Surles-Zeigler MC et al (2013) Gene expression patterns following unilateral traumatic brain injury reveals a local pro-inflammatory and remote anti-inflammatory response. BMC Genom 14:282

    Article  CAS  Google Scholar 

  55. Das M, Mohapatra S, Mohapatra SS (2012) New perspectives on central and peripheral immune responses to acute traumatic brain injury. J Neuroinflammation 9:236

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Allan SM, Tyrrell PJ, Rothwell NJ (2005) Interleukin-1 and neuronal injury. Nat Rev Immunol 5:629–640

    Article  CAS  PubMed  Google Scholar 

  57. Simi A, Tsakiri N, Wang P et al (2007) Interleukin-1 and inflammatory neurodegeneration. Biochem Soc Trans 35:1122–1126

    Article  CAS  PubMed  Google Scholar 

  58. Utagawa A, Truettner JS, Dietrich WD et al (2008) Systemic inflammation exacerbates behavioral and histopathological consequences of isolated traumatic brain injury in rats. Exp Neurol 211:283–291

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Tehranian R, Andell-Jonsson S, Beni SM et al (2002) Improved recovery and delayed cytokine induction after closed head injury in mice with central overexpression of the secreted isoform of the interleukin-1 receptor antagonist. J Neurotrauma 19:939–951

    Article  PubMed  Google Scholar 

  60. Kinoshita K, Chatzipanteli K, Vitarbo E et al (2002) Interleukin-1beta messenger ribonucleic acid and protein levels after fluid-percussion brain injury in rats: Importance of injury severity and brain temperature. Neurosurgery 51:195–203 (discussion 203)

    Google Scholar 

  61. Tsai TH (2002) Determination of naringin in rat blood, brain, liver, and bile using microdialysis and its interaction with cyclosporin a, a p-glycoprotein modulator. J Agric Food Chem 50:6669–6674

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was directed by Pro. Hong-yang Zhao from Union Hospital affiliated to Tongji Medical Collage of Huazhong University of Science and Technology, and helped by members from neuroscience research center of neurology, Tongji Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-sheng Qu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Qj., Wang, Ly., Wei, Zx. et al. Continual Naringin Treatment Benefits the Recovery of Traumatic Brain Injury in Rats Through Reducing Oxidative and Inflammatory Alterations. Neurochem Res 39, 1254–1262 (2014). https://doi.org/10.1007/s11064-014-1306-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1306-2

Keywords

Navigation