Skip to main content

Advertisement

Log in

Therapeutic Efficacy of Silibinin on Human Neuroblastoma Cells: Akt and NF-κB Expressions May Play an Important Role in Silibinin-Induced Response

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Neuroblastoma is the most common solid tumor in children. Current therapy modalities have resulted in little amelioration in the cure rate of neuroblsatoma and therefore, outlining biologically based therapies for neuroblastoma remains of main priority. This study was carried out to appraise the impeding effects of silibinin, a potent anti-cancer agent, on two different neuroblastoma cell lines, stromal SK-N-MC and neuroblastic SK-N-BE(2) cells. The microculture tetrazolium assay, gelatin zymography, colony formation assay, cell cycle distribution survey, apoptosis assay, and quantitative real-time reverse transcription-PCR were applied to evaluate the effects of silibinin on metabolic activity, gelatinolytic activity of MMP-2 and MMP-9, surviving potential, cell cycle, apoptosis, and expression pattern of the genes involved in cell survival and invasion of the two neuroblastoma cell lines. Treatment for 48 h inhibited metabolic activity and clonogenic potential of SK-N-MC cells in a dose-dependent manner. Silibinin also inhibited transcriptional levels of MMP-2, MMP-9, and uPAR, as markers of cell invasion, in SK-N-MC cells. Higher concentration of silibinin (75, 100 μM) suppressed enzymatic activity of MMP-2 in this cell line. No change in apoptosis and cell cycle was observed in neither of the cells after treatment with silibinin. On the other hand, silibinin highly decreased mRNA expression of Akt, and NF-κB1 and its regulators, IKK1 and IKK2 in SK-N-MC cell line. Comparison of transcriptional expression of Akt, and NF-κB1 in untreated stromal and neuroblastic cell lines shows that their basal transcriptional levels are much higher in SK-N-BE(2) cell line than that in SK-N-MC cells. It seems that SK-N-BE(2) cell line probably resists to silibinin through higher expression of Akt and probably NF-κB1. Collectively, our results demonstrated that silibinin highly inhibits the proliferative potentials of SK-N-MC cell line, whilst it had less inhibitory effect on SK-N-BE(2) cell line. Our results suggest that suppression of SK-N-MC cell line by silibinin may be through inhibition of Akt-mediated NF-κB1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Brodeur GM (2003) Neurobastoma: biological insights inro a clinical enigma. Nature 3:203–216

    CAS  Google Scholar 

  2. Yao R, Cooper G (1995) Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. Science 267:2003–2006

    Article  PubMed  CAS  Google Scholar 

  3. Jaboin J et al (2002) Brain-derived neurotrophic factor activation of TrkB protects neuroblastoma cells from chemotherapy-induced apoptosis via phosphatidylinositol 3-kinase pathway. Cancer Res 62:6756–6763

    PubMed  CAS  Google Scholar 

  4. Schramm A et al (2005) Biological effects of TrkA and TrkB receptor signaling in neuroblastoma. Cancer Lett 228:143–153

    Article  PubMed  CAS  Google Scholar 

  5. Blume-Jensen P, Hunter T (2001) Oncogenic kinase signalling. Nature 17(411):355–365

    Article  Google Scholar 

  6. Vivanco I, Sawyers C (2002) The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2:489–501

    Article  PubMed  CAS  Google Scholar 

  7. Cully M et al (2006) Beyond PTEN mutations: the PI3 K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer 6:184–192

    Article  PubMed  CAS  Google Scholar 

  8. Chakravarti A et al (2004) The prognostic significance of phosphatidylinositol 3-kinase pathway activation in human gliomas. J Clin Oncol 22:1926–1933

    Article  PubMed  CAS  Google Scholar 

  9. Choe G et al (2003) Analysis of the phosphatidylinositol 3-kinase signaling pathway in glioblastoma patients in vivo. Cancer Res 63:2742–2746

    PubMed  CAS  Google Scholar 

  10. Opel D et al (2007) Activation of Akt predicts poor outcome in neuroblastoma. Cancer Res 67(2):735–745

    Article  PubMed  CAS  Google Scholar 

  11. Fulda S (2009) The PI3 K/Akt/mTOR pathway as therapeutic target in neuroblastoma. Curr Cancer Drug Targets 9(6):729–737

    Article  PubMed  CAS  Google Scholar 

  12. Engelmann J (2009) Targeting PI3 K signaling in cancer: opportunities, challenges and limitations. Nat Rev Cancer 9:550–569

    Article  Google Scholar 

  13. Kane LP et al (1999) Induction of NF-kB by the Akt/PKB kinase. Curr Biol 9:601–604

    Article  PubMed  CAS  Google Scholar 

  14. Baud V, Karin M (2009) Is NF-kB a good target for cancer therapy? Hopes and pitfalls. Nat Rev Drug Discov 8:33–40

    Article  PubMed  CAS  Google Scholar 

  15. Bian X et al (2002) Constitutively active NFκB is required for the survival of S-type neuroblastoma. J Biol Chem 277(44):42144–42150

    Article  PubMed  CAS  Google Scholar 

  16. Smith D et al (2008) NF-kB controls growth of glioblastomas/astrocytomas. Mol Cell Biochem 307:141–147

    Article  PubMed  CAS  Google Scholar 

  17. Nagai S et al (2002) Aberrant nuclear factor-kappaB activity and its participation in the growth of human malignant astrocytoma. J Neurosurg 96:909–917

    Article  PubMed  CAS  Google Scholar 

  18. Ara T et al (1998) Immunohistochemical expression of MMP-2, MMP-9, and TIMP-2 in neuroblastoma: association with tumor progression and clinical outcome. J Pediatr Surg 33(8):1272–1278

    Article  PubMed  CAS  Google Scholar 

  19. Veas Rd, Schweigerer L, Medina M (1995) Matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-2 expression in paediatric tumour cells. Effects of tumour cell proliferation modulators on gelatinolytic activity. J Cancer Res Clin Oncol 121(5):275–278

    Article  PubMed  Google Scholar 

  20. Cotterill S et al (2001) Late relapse and prognosis for neuroblastoma patients surviving 5 years or more: a report from the European Neuroblastoma Study Group “Survey”. Med Pediatr Oncol 36(1):235–238

    Article  PubMed  CAS  Google Scholar 

  21. Mertens A et al (2001) Late mortality experience in five-year survivors of childhood and adolescent cancer: the Childhood Cancer Survivor Study. J Clin Oncol 19(13):3163–3172

    PubMed  CAS  Google Scholar 

  22. Jacobs BP et al (2002) Milk thistle for the treatment of liver disease. A systematic review and meta-analysis. Am J Med 113:506–515

    Article  PubMed  Google Scholar 

  23. Deep G, Agarwal R (2010) Antimetastatic efficacy of silibinin: molecular mechanisms and therapeutic potential against cancer. Cancer Metastasis Rev 49:447–463

    Article  Google Scholar 

  24. Flaig TW, Gustafson D, Su LJ, Zirrolli JA, Crighton F, Harrison GS, Pierson AS, Agarwal R, Glodé LM (2007) A phase I and pharmacokinetic study of silybin-phytosome in prostate cancer patients. Invest New Drugs 25(2):139–146

    Article  PubMed  CAS  Google Scholar 

  25. Momeny M et al (2010) Silibinin inhibits invasive properties of human glioblastoma U87MG cells through suppression of cathepsin B and nuclear factor kappa B-mediated induction of matrix metalloproteinase 9. Anticancer Drugs 21(3):252–260

    Article  PubMed  CAS  Google Scholar 

  26. Dizaji MZ, et al (2011) Synergistic effects of arsenic trioxide and silibinin on apoptosis and invasion in human Glioblastoma U87MG cell line. Neurochem Res

  27. Franken NAP et al (2006) Clonogenic assay of cells in vivo. Nat Protoc 1(5):2315–2319

    Article  PubMed  CAS  Google Scholar 

  28. Hawkes S, Li H, Taniguchi G (2010) Zymography and reverse zymography for detecting MMPs and TIMPs. Methods Mol Biol 622:257–269

    Article  PubMed  CAS  Google Scholar 

  29. Eppstein A et al (2006) Differential sensitivity of chemoresistant neuroblastoma subtypes to MAPK-targeted treatment correlates with ERK, p53 expression, and signaling response to U0126. J Pediatr Surg 41(1):252–259

    Article  PubMed  Google Scholar 

  30. Isaacs JS et al (1998) Differential subcellular p53 localization and function in N- and S-type neuroblastoma cell lines. Cell Growth Differ 9:545–555

    PubMed  CAS  Google Scholar 

  31. Foley NH et al (2010) MicroRNA-184 inhibits neuroblastoma cell survival through targeting the serine/threonine kinase AKT2. Mol Cancer. doi:10.1186/1476-4598-9-83

    PubMed  Google Scholar 

  32. Abedini MR et al (2010) Akt promotes chemoresistance in human ovarian cancer cells by modulating cisplatin-induced, p53-dependent ubiquitination of FLICE-like inhibitory protein Dysregulation of FLIP ubiquitination by Akt in chemoresistant ovarian cancer. Oncogene 29:11–25

    Article  PubMed  CAS  Google Scholar 

  33. Gagnon V, Mathieu I, Sexton E, Leblanc K, Asselin E (2004) AKT involvement in cisplatin chemoresistance of human uterine cancer cells. Gynecol Oncol 3:785–795

    Article  Google Scholar 

  34. Knuefermann C et al (2003) HER2/PI-3 K/Akt activation leads to a multidrug resistance in human breast adenocarcinoma cells. Oncogene 22:3205–3212

    Article  PubMed  CAS  Google Scholar 

  35. Chen J et al (2011) Insulin caused drug resistance to oxaliplatin in colon cancer cell line HT29. J Gastrointest Oncol 2(1):27–33

    PubMed  Google Scholar 

  36. Oki E et al (2005) Akt phosphorylation associates with LOH of PTEN and leads to chemoresistance for gastric cancer. Int J Cancer 117:376–380

    Article  PubMed  CAS  Google Scholar 

  37. Emran M, Rebbaa A, Mirkin B (2002) Doxorubicin resistant neuroblastoma cells secrete factors that activate AKT and attenuate cytotoxicity in drug-sensitive cells. Cancer Lett 182(1):53–59

    Article  PubMed  CAS  Google Scholar 

  38. Li W et al (2009) Inhibition of Akt sensitises neuroblastoma cells to gold(III) porphyrin 1a, a novel antitumour drug induced apoptosis and growth inhibition. Br J Cancer 10(2):342–349

    Article  Google Scholar 

  39. Singh RP et al (2005) Silibinin strongly inhibits growth and survival of human endothelial cells via cell cycle arrest and downregulation of survivin, Akt and NF-jB: implications for angioprevention and antiangiogenic therapy. Oncogene 24:1188–1202

    Article  PubMed  CAS  Google Scholar 

  40. Eberle K et al (2011) Carcinoma matrix controls resistance to cisplatin through talin regulation of NF-kB. PLoS One 6(6):e21469

    Article  Google Scholar 

  41. Arlt A et al (2003) Role of NF-kappaB and Akt/PI3 K in the resistance of pancreatic carcinoma cell lines against gemcitabine-induced cell death. Oncogene 22:3243–3251

    Article  PubMed  CAS  Google Scholar 

  42. Xue Wen et al (2011) Response and resistance to NF-κB inhibitors in mouse models of lung adenocarcinoma. Cancer Discov 1:236–247

    Article  PubMed  CAS  Google Scholar 

  43. Pomerantz J, Baltimore D (2002) Two pathways to NF-kappaB. Mol Cell 10:693–695

    Article  PubMed  CAS  Google Scholar 

  44. Derudder E et al (2003) RelB/p50 dimers are differentially regulated by tumor necrosis factor-alpha and lymphotoxin-beta receptor activation. J Biol Chem 278:23278–23284

    Article  PubMed  CAS  Google Scholar 

  45. Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases structure, function, and biochemistry. Circ Res 92:827–839

    Article  PubMed  CAS  Google Scholar 

  46. Egeblad M, Werb Z (2002) New functions for matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–173

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from Department of Neurology, Iranian Center of Neurological research, Tehran University of Medical Sciences, Tehran, Iran. Also partially by Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed H. Ghaffari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yousefi, M., Ghaffari, S.H., Soltani, B.M. et al. Therapeutic Efficacy of Silibinin on Human Neuroblastoma Cells: Akt and NF-κB Expressions May Play an Important Role in Silibinin-Induced Response. Neurochem Res 37, 2053–2063 (2012). https://doi.org/10.1007/s11064-012-0827-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0827-9

Keywords

Navigation