Skip to main content
Log in

Dopamine Involved in the Nociceptive Modulation in the Parafascicular Nucleus of Morphine-Dependent Rat

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Dopamine regulates pain perception in some areas of the central nervous system. Previously, we have confirmed that dopamine potentiated the electric activities of the evoked discharges of pain-excited neurons (PENs) and inhibited those of pain-inhibited neurons (PINs) in the parafascicular nucleus (Pfn) of normal rats. The mechanism of action of dopamine on pain-related neurons in the Pfn of morphine-dependent rat is still unknown. The present study aimed to determine the effects of dopamine and its receptor antagonist droperidol on the pain-evoked responses of the PEN and PIN in the Pfn of morphine-dependent rats, and to compare the effects between the morphine-dependent rat and the normal rat. The trains of electric impulses applied to the sciatic nerve were used as noxious stimulation. The discharges of PEN or PIN in the Pfn were recorded by using a glass microelectrode. The results showed that intra-Pfn microinjection of dopamine decreased the frequency of noxious stimulation-induced discharges of PEN and increased the frequency of PIN. The intra-Pfn administration of droperidol produced an opposite effect. These results demonstrated that dopamine is involved in nociceptive modulation in the morphine-dependent rat, the responses to noxious stimulation between normal rat and morphine-dependent rat are completely opposite. The effect of dopamine is through the dopamine D2 receptor of PENs and PINs in Pfn. The results suggest that the dopamine system of the Pfn may become a therapeutic target for analgesia and the treatment of morphine dependence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ziegler PP (2005) Addiction and the treatment of pain. Subst Use Misuse 40:1945–1954

    Article  PubMed  Google Scholar 

  2. Koob GF, Sanna PP, Bloom FE (1998) Neuroscience of addiction. Neuron 21:467–476

    Article  PubMed  CAS  Google Scholar 

  3. Wood PB (2008) Role of central dopamine in pain and analgesia. Expert Rev Neurother 8:781–797

    Article  PubMed  CAS  Google Scholar 

  4. Magnusson JE, Fisher K (2000) The involvement of dopamine in nociception: the role of D(1) and D(2) receptors in the dorsolateral striatum. Brain Res 855:260–266

    Article  PubMed  CAS  Google Scholar 

  5. López-Avila A, Coffeen U, Ortega-Legaspi JM, del Angel R, Pellicer F (2004) Dopamine and NMDA systems modulate long-term nociception in the rat anterior cingulate cortex. Pain 111:136–143

    Article  PubMed  Google Scholar 

  6. Coffeen U, López-Avila A, Ortega-Legaspi JM, del Angel R, López-Muñoz FJ, Pellicer F (2008) Dopamine receptors in the anterior insular cortex modulate long-term nociception in the rat. Eur J Pain 12:535–543

    Article  PubMed  CAS  Google Scholar 

  7. Dockstader CL, Rubinstein M, Grandy DK, Low MJ, van der Kooy D (2001) The D2 receptor is critical in mediating opiate motivation only in opiate-dependent and withdrawn mice. Eur J Neurosci 13:995–1001

    Article  PubMed  CAS  Google Scholar 

  8. Funada M, Shippenberg TS (1996) Differential involvement of D1 and D2 dopamine receptors in the expression of morphine withdrawal signs in rats. Behav Pharmacol 7:448–453

    PubMed  CAS  Google Scholar 

  9. Harris GC, Aston-Jones G (1994) Involvement of D2 dopamine receptors in the nucleus accumbens in the opiate withdrawal syndrome. Nature 371:155–157

    Article  PubMed  CAS  Google Scholar 

  10. Maldonado R, Saiardi A, Valverde O, Samad TA, Roques BP, Borrelli E (1997) Absence of opiate rewarding effects in mice lacking dopamine D2 receptors. Nature 388:586–589

    Article  PubMed  CAS  Google Scholar 

  11. Mark VH, Ervin F, Yakovlev PI (1963) Stereotactic thalamotomy: III. The verification of anatomical lesion sites in the human thalamus. Arch Neurol 8:528–538

    Article  Google Scholar 

  12. Kaebler WW, Mitchell CL, Yarmat AJ, Afifi AK, Lorens SA (1975) Centrum medianum-parafascicular lesions and reactivity to noxious and nonnoxious stimuli. Exp Neurol 46:282–290

    Article  Google Scholar 

  13. Xiao H, Zhai DX, Yan BB, Wang JH, Xu WS, Wang GY, Bai SS, Kong QF, Sun B, Wang DD, Jin DJ, Li HL (2009) A role for the parafascicular thalamic nucleus in the development of morphine dependence and withdrawal. Brain Res 1271:74–82

    Article  PubMed  CAS  Google Scholar 

  14. Cheng BC, Zhou XP, Zhu Q, Gong S, Qin ZH, Reid PF, Raymond LN, Yin QZ, Jiang XH (2009) Cobratoxin inhibits pain-evoked discharge of neurons in thalamic parafascicular nucleus in rats: involvement of cholinergic and serotonergic systems. Toxicon 54:224–232

    Article  PubMed  CAS  Google Scholar 

  15. Dafny N, Reyes-Vazquez C, Qiao JT (1990) Modification of nociceptively identified neurons in thalamic parafascicularis by chemical stimulation of dorsal raphe with glutamate, morphine, serotonin and focal dorsal raphe electrical stimulation. Brain Res Bull 24:717–723

    Article  PubMed  CAS  Google Scholar 

  16. Guo Z, Yuan DJ (2008) Midazolam inhibits cardiac nociception evoked by coronary artery occlusion in rats. Eur J Anaesthesiol 25:479–484

    Article  PubMed  CAS  Google Scholar 

  17. Sun MZ, Chen LS, Gu HL, Cheng J, Yue LS (1980) Effect of acupuncture on unit discharge in nucleus parafascicularis of rat thalamus. Sheng Li Xue Bao 32:207–213

    Google Scholar 

  18. Weigel R, Krauss JK (2004) Center median-parafascicular complex and pain control. Review from a neurosurgical perspective. Stereotact Funct Neurosurg 82:115–126

    Article  PubMed  Google Scholar 

  19. Zhang XT (1973) The integration of thalamus in the process of acupuncture analgesia. Sci China 1:28–52

    Google Scholar 

  20. Bian JT, Sun MZ, Han JS (1993) Reversal of electroacupuncture tolerance by CCK-8 antiserum: an electrophysiological study on pain-related neurons in nucleus parafascicularis of the rat. Int J Neurosci 72:15–29

    Article  PubMed  CAS  Google Scholar 

  21. Zhang Y, Yang CX, Xu X, Jiao RS, Jin HB, Lv Y, Yang H, Xu MY (2008) Morphine dependence changes the role of droperidol on pain-related electric activities in caudate nucleus. Biochem Biophys Res Commun 372:179–185

    Article  PubMed  CAS  Google Scholar 

  22. Steiner H, Tseng KY (2010) Handbook of basal ganglia structure and function. Academic Press, London, p 385

    Google Scholar 

  23. Zimmermann M (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16:109–110

    Article  PubMed  CAS  Google Scholar 

  24. Houshyar H, Galigniana MD, Pratt WB, Woods JH (2001) Differential responsivity of the hypothalamic–pituitary–adrenal axis to glucocorticoid negative-feedback and corticotrophin releasing hormone in rats undergoing morphine withdrawal: possible mechanisms involved in facilitated and attenuated stress responses. J Neuroendocrinol 13:875–886

    Article  PubMed  CAS  Google Scholar 

  25. Houshyar H, Gomez F, Manalo S, Bhargava A, Dallman MF (2003) Intermittent morphine administration induces dependence and is a chronic stressor in rats. Neuropsychopharmacology 28:1960–1972

    Article  PubMed  CAS  Google Scholar 

  26. Koob GF, Maldonado R, Stinus L (1992) Neural substrates of opiate withdrawal. Trends Neurosci 15:186–191

    Article  PubMed  CAS  Google Scholar 

  27. Maldonado R, Negus S, Koob GF (1992) Precipitation of morphine withdrawal syndrome in rats by administration of mu-, delta- and kappa-selective opioid antagonists. Neuropharmacology 31:1231–1241

    Article  PubMed  CAS  Google Scholar 

  28. Pellegrino LJ, Pellegrino AS, Cushman AJ (1979) A stereotaxic atlas of the rat brain, 2nd edn. Plenum Press, New York, pp 33–38

    Google Scholar 

  29. Gao HR, Shi TF, Yang CX, Zhang D, Zhang GW, Zhang Y, Jiao RS, Zhang H, Xu MY (2010) The effect of dopamine on pain-related neurons in the parafascicular nucleus of rats. J Neural Transm 117:585–591

    Article  PubMed  CAS  Google Scholar 

  30. Shyu BC, Kiritsy-Roy JA, Morrow TJ, Casey KL (1992) Neurophysiological, pharmacological and behavioral evidence for medial thalamic mediation of cocaine-induced dopaminergic analgesia. Brain Res 572:216–223

    Article  PubMed  CAS  Google Scholar 

  31. Cure S, Rathbone J, Carpenter S (2004) Droperidol for acute psychosis. Cochrane Database Syst Rev (4): CD002830

  32. Zhang D, Zhang H, Jin GZ, Zhang K, Zhen X (2008) Single dose of morphine produced a prolonged effect on dopamine neuron activities. Mol Pain 4:57

    Article  PubMed  Google Scholar 

  33. Bonci A, Bernardi G, Grillner P, Mercuri NB (2003) The dopamine-containing neuron: maestro or simple musician in the orchestra of addiction? Trends Pharmacol Sci 24:172–177

    Article  PubMed  CAS  Google Scholar 

  34. Trulson ME, Arasteh K (1985) Morphine increases the activity of midbrain dopamine neurons in vitro. Eur J Pharmacol 114:105–109

    Article  PubMed  CAS  Google Scholar 

  35. Sklair-Tavron L, Shi WX, Lane SB, Harris HW, Bunney BS, Nestler EJ (1996) Chronic morphine induces visible changes in the morphology of mesolimbic dopamine neurons. Proc Natl Acad Sci USA 93:11202–11207

    Article  PubMed  CAS  Google Scholar 

  36. Hnasko TS, Sotak BN, Palmiter RD (2005) Morpine reward in dopamine-deficient mice. Nature 438:854–857

    Article  PubMed  CAS  Google Scholar 

  37. Nestler EJ, Aghajanian GK (1997) Molecular and cellular basis of addiction. Science 278:58–63

    Article  PubMed  CAS  Google Scholar 

  38. Shin KW, Hong JT, Yoo HS, Song S, Oh KW (2003) Inhibitory effects of glycine on morphine-induced hyperactivity, reverse tolerance and postsynaptic dopamine receptor supersensitivity in mice. Arch Pharm Res 26:1074–1078

    Article  PubMed  CAS  Google Scholar 

  39. De Vries TJ, Shippenberg TS (2002) Neural systems underlying opiate addiction. J Neurosci 22:3321–3325

    PubMed  Google Scholar 

  40. Rouge-Pont F, Usiello A, Benoit-Marand M, Gonon F, Piazza PV, Borrelli E (2002) Changes in extracellular dopamine induced by morphine and cocaine: crucial control by D2 receptors. J Neurosci 22:3293–3301

    PubMed  CAS  Google Scholar 

  41. Wang GJ, Volkow ND, Fowler JS, Logan J, Abumrad NN, Hitzemann RJ, Pappas NS, Pascani K (1997) Dopamine D2 receptor availability in opiate-dependent subjects before and after naloxone-precipitated withdrawal. Neuropsychopharmacology 16:174–182

    Article  PubMed  CAS  Google Scholar 

  42. Volkow ND, Fowler JS, Wang GJ (1999) Imaging studies on the role of dopamine in cocaine reinforcement and addiction in humans. J Psychopharmacol 13:337–345

    Article  PubMed  CAS  Google Scholar 

  43. Nestby P, Tjon GH, Visser DT, Drukarch B, Leysen JE, Mulder AH, Schoffelmeer AN (1995) Intermittent morphine treatment causes long-term desensitization of functional dopamine D2 receptors in rat striatum. Eur J Pharmacol 294:771–777

    Article  PubMed  CAS  Google Scholar 

  44. Heidari P, Sahebgharani M, Riazi G, Zarrindast MR (2006) Influence of morphine and dopamine receptor sensitization on locomotor activity in mice. Pharmacology 78:185–192

    Article  PubMed  CAS  Google Scholar 

  45. Wamsley JK, Gehlert DR, Filloux FM, Dawson TM (1989) Comparison of the distribution of D-1 and D-2 dopamine receptors in the rat brain. J Chem Neuroanat 2:119–137

    PubMed  CAS  Google Scholar 

  46. Rieck RW, Ansari MS, Whetsell WO Jr, Deutch AY, Kessier RM (2009) Distribution of dopamine D2-like receptors in the human thalamus: autoradiographic and PET studies. Neuropsychopharmacology 65:1024–1031

    Google Scholar 

  47. Hurd YL, Suzuki M, Sedvall GC (2001) D1 and D2 dopamine receptor mRNA expression in whole hemisphere sections of the human brain. J Chem Neuroanat 22:127–137

    Article  PubMed  CAS  Google Scholar 

  48. Kilpatrick IC, Phillipson OT (1986) Thalamic control of dopaminergic functions in the caudate-putamen of the rat–I. The influence of electrical stimulation of the parafascicular nucleus on dopamine utilization. Neuroscience 19:965–978

    Article  PubMed  CAS  Google Scholar 

  49. Tong ZQ, Chen SC, Zhang FT (1985) Effects of stimulation of the rabbit caudate nucleus on units responsive to noxious stimuli in the parafascicular nucleus of the thalamus. Sheng Li Xue Bao 37:128–136

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (No. 30240058), the Science & Technology Agency in Heilongjiang of China (No.GC05C40607), the Natural Science Foundation in Heilongjiang of China (No. D200936) and the Science Foundation of Health Department in Heilongjiang of China (No. 2007-525).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Y. Xu or H. Zhu.

Additional information

H.R. Gao, T.F. Shi and C.X. Yang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, H.R., Shi, T.F., Yang, C.X. et al. Dopamine Involved in the Nociceptive Modulation in the Parafascicular Nucleus of Morphine-Dependent Rat. Neurochem Res 37, 428–435 (2012). https://doi.org/10.1007/s11064-011-0629-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-011-0629-5

Keywords

Navigation