Skip to main content
Log in

The Analgesic Effect and Mechanism of the Combination of Sodium ferulate and Oxymatrine

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Sodium ferulate (SF) and Oxymatrine (OMT) were compounds extracted from Chinese herbs, and have been used in clinical treatment of heart and hepatic diseases, respectively, in China for many years. The objective of this study was to examine the analgesic effect and the mechanism of the combined treatment of SF and OMT. Using the animal pain models by applying Acetic Acid Writhing Test and Formalin Test, the combination of SF and OMT showed significant analgesic effect in dose-dependent manner. In vitro, the combined treatment inhibited the increase in intracellular calcium concentration evoked by capsaicin in the dorsal root ganglion neurons. Importantly, a synergistic inhibitory effect of SF and OMT on the capsaicin-induced currents was demonstrated by whole-cell patch-clamp. Our results suggest that SF and OMT cause significant analgesic effect which maybe related to the synergistic inhibition of transient receptor potential vanilloid-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ogiwara T, Satoh K, Kadoma Y et al (2002) Radical scavenging activity and cytotoxicity of ferulic acid. Anticancer Res 22:2711–2717

    CAS  PubMed  Google Scholar 

  2. Wang BH, Ou-Yang JP (2005) Pharmacological actions of sodium ferulate in cardiovascular system. Cardiovasc Drug Rev 23:161–172

    PubMed  Google Scholar 

  3. Masuda T, Yamada K, Maekawa T et al (2006) Antioxidant mechanism studies on ferulic acid: identification of oxidative coupling products from methyl ferulate and linoleate. J Agric Food Chem 54:6069–6074

    Article  CAS  PubMed  Google Scholar 

  4. Srinivasan M, Sudheer AR, Menon VP (2007) Ferulic acid: therapeutic potential through its antioxidant property. J Clin Biochem Nutr 40:92–100

    Article  CAS  PubMed  Google Scholar 

  5. Chen XS, Wang GJ, Cai X et al (2001) Inhibition of hepatitis B virus by Oxymatrine in vivo. World J Gastroenterol 7:49–52

    CAS  PubMed  Google Scholar 

  6. Honore P, Wismer CT, Mikusa J et al (2005) A-425619 [1-isoquinolin-5-yl-3-(4-trifluoromethyl-benzyl) -urea], a novel transient receptor potential type V1 receptor antagonist, relieves path physiological pain associated with inflammation and tissue injury in rats. J Pharmacol Exp Ther 314:410–421

    Article  CAS  PubMed  Google Scholar 

  7. Ramsey IS, Delling M, Clapham DE (2006) An introduction to TRP channels. Annu Rev Physiol 68:619–647

    Article  CAS  PubMed  Google Scholar 

  8. Benham CD, Davis JB, Randall AD (2002) Vanilloid and TRP channels: a family of lipid-gated cation channels. Neuropharmacology 42:873–888

    Article  CAS  PubMed  Google Scholar 

  9. Mezey E, Toth ZE, Cortright DN et al (2000) Distribution of mRNA for vanilloid receptor subtype 1 (VR1), and VR1-like immunoreactivity, in the central nervous system of the rat and human. Proc Natl Acad Sci USA 97:3655–3660

    Article  CAS  PubMed  Google Scholar 

  10. Sanchez JF, Krause JE, Cortright DN (2001) The distribution and regulation of vanilloid receptor VR1 and VR1 5’ splice variant RNA expression in rat. Neuroscience 107:373–381

    Article  CAS  PubMed  Google Scholar 

  11. Caterina MJ, Julius D (2001) The vanilloid receptor: a molecular gateway to the pain pathway. Annu Rev Neurosci 24:487–517

    Article  CAS  PubMed  Google Scholar 

  12. Veronesi B, Oortgiesen M (2006) The TRPV1 receptor: target of toxicants and therapeutics. Toxicol Sci 89:1–3

    Article  CAS  PubMed  Google Scholar 

  13. Bruce BR, Rachid EL et al (2007) [3H] A-778317 [1-((R)-5-tert-Butyl-indan-1-yl)-3-isoquinolin-5-yl-urea]: a novel, stereoselective, high-affinity antagonist is a useful radioligand for the human transient receptor potential vanilloid-1 (TRPV1) receptor. J Pharmacol Exp Ther 323:285–293

    Article  Google Scholar 

  14. Wang ST, Chen S, Guo M et al (2008) Inhibitory effect of cochinchinenin B on capsaicin-activated responses in rat dorsal root ganglion neurons. Brain Res 1201:34–40

    Article  CAS  PubMed  Google Scholar 

  15. Soukupová M, Doležal T, Kršiak M (2009) The synergistic interaction between rilmenidine and paracetamol in the writhing test in mice. Naunyn Schmiedebergs Arch Pharmacol 379:575–580

    Article  PubMed  Google Scholar 

  16. Sun XC, Chen WN, Li SQ et al (2008) Fluorocitrate, an inhibitor of glial metabolism, inhibits the up-regulation of NOS expression, activity and NO production in the spinal cord induced by formalin test in rats. Neurochem Res 34:351–359

    Article  PubMed  Google Scholar 

  17. Hunskaar S, Hole K (1987) The formalin test in mice: dissociation between inflammatory and non-inflammatory pain. Pain 30:103–104

    Article  CAS  PubMed  Google Scholar 

  18. Santiago AR, Carvalho CM (2008) Differential contribution of L-, N-, and P/Q-type calcium channels to [Ca2+]i changes evoked by kainite in hippocampal neurons. Neurochem Res 33:1501–1508

    Article  CAS  PubMed  Google Scholar 

  19. Ohta T, Imagawa T, Ito S (2009) Involvement of transient receptor potential vanilloid subtype 1 (TRPV1) in analgesic action of methylsalicylate. Mol Pharmacol 75:307–317

    Article  CAS  PubMed  Google Scholar 

  20. Luszczki JJ, Czuczwar SJ et al (2004) Isobolographic profile of interactions between tiagabine and gabapentin: a preclinical study. Naunyn Schmiedebergs Arch Pharmacol 369:434–446

    Article  CAS  PubMed  Google Scholar 

  21. Ferrer-Montiel A, Garcia-Martinez C, Morenilla-Palao C et al (2004) Molecular architecture of the vanilloid receptor. Insights for drug design. Eur J Biochem 271:1820–1826

    Article  CAS  PubMed  Google Scholar 

  22. Brauchi S, Orta G, Salazar M et al (2006) A hot-sensing cold receptor: C-terminal domain determines thermosensation in transient receptor potential channels. J Neurosci 26:4835–4840

    Article  CAS  PubMed  Google Scholar 

  23. Wang Y (2008) The functional regulation of TRPV1 and its role in pain sensitization. Neurochem Res 33:2008–2012

    Article  CAS  PubMed  Google Scholar 

  24. Shin J, Cho H, Hwang SW et al (2002) Bradykinin-12-lipoxygenase-VR1 signaling pathway for inflammatory hyperalgesia. Proc Natl Acad Sci USA 99:10150–10155

    Article  CAS  PubMed  Google Scholar 

  25. Morenilla-Palao C, Planells-Cases R, Garcia-Sanz N et al (2004) Regulated exocytosis contributes to protein kinase C potentiation of vanilloid receptor activity. J Biol Chem 279:25665–25672

    Article  CAS  PubMed  Google Scholar 

  26. Nurse P (1990) Universal control mechanism regulation onset of M-phase. Nature 344:503–508

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Peter Zhang of MediAlliance Inc for his valuable comments and Prof. Zhongwei Li, Florida Atlantic University, for help in English editing and formatting of this article. This work was supported with grants and materials from Beijing SL Pharmaceutical Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhifeng Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Sun, Y., Gao, Y. et al. The Analgesic Effect and Mechanism of the Combination of Sodium ferulate and Oxymatrine. Neurochem Res 35, 1368–1375 (2010). https://doi.org/10.1007/s11064-010-0193-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0193-4

Keywords

Navigation