Skip to main content
Log in

Transportable and Non-transportable Inhibitors of L-glutamate Uptake Produce Astrocytic Stellation and Increase EAAT2 Cell Surface Expression

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Astrocytic excitatory amino acid transporters (EAATs) regulate excitatory transmission and limit excitotoxicity. Evidence for a functional interface between EAATs and glial fibrillary acidic protein (GFAP) relevant to astrocytic morphology led to investigations of actions of transportable (d-Aspartate (d-Asp) and (2S,3S,4R)-2-(carboxycyclopropyl)glycine (l-CCG-III)) and non-transportable (dl-threo-β-benzyloxyaspartate (dl-TBOA)) inhibitors of Glu uptake in murine astrocytes. d-Asp (1 mM), l-CCG-III (0.5 mM) and dl-TBOA (0.5 mM) produced time-dependent (24–72 h) reductions in 3[H]d-Asp uptake (approximately 30–70%) with little or no gliotoxicity. All drugs induced a profound change in phenotype from cobblestone to stellate morphology and image analysis revealed increases in the intensity of GFAP immunolabelling for l-CCG-III and dl-TBOA. Cytochemistry indicated localized changes in F-actin distribution. Cell surface expression of EAAT2, but not EAAT1, was elevated at 72 h. Blockade of Glu uptake by both types of EAAT inhibitor exerts longer-term effects on astrocytic morphology and a compensatory homeostatic rise in EAAT2 abundance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Marcaggi P, Attwell D (2004) Role of glial amino acid transporters in synaptic transmission and brain energetics. Glia 47:217–225

    Article  PubMed  Google Scholar 

  2. Beart PM, O’Shea RD (2007) Transporters for L-glutamate: an update on their molecular pharmacology and pathological involvement. Br J Pharmacol 150:5–17

    Article  CAS  PubMed  Google Scholar 

  3. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  CAS  PubMed  Google Scholar 

  4. Pekny M, Nilsson M (2005) Astrocyte activation and reactive gliosis. Glia 50:427–434

    Article  PubMed  Google Scholar 

  5. Cahoy JD, Emery B, Kaushal A et al (2008) A transcriptome database for astrocytes, neurons, and oligodendrocyte: a new resource for understanding brain development and function. J Neurosci 28:264–278

    Article  CAS  PubMed  Google Scholar 

  6. Regan MR, Huang YH, Kim YS et al (2007) Variations in promoter activity reveal a differential expression and physiology of glutamate transporters by glia in the developing and mature CNS. J Neurosci 27:6607–6619

    Article  CAS  PubMed  Google Scholar 

  7. Hughes EG, Maguire JL, McMinn MT et al (2004) Loss of glial fibrillary acidic protein results in decreased glutamate transport and inhibition of PKA-induced EAAT2 cell surface trafficking. Brain Res Mol Brain Res 124:114–123

    Article  CAS  PubMed  Google Scholar 

  8. Shobha K, Vijayalakshmi K, Alladi PA et al (2007) Altered in vitro and in vivo expression of glial glutamate transporter-1 following exposure to cerebrospinal fluid of amyotrophic lateral sclerosis patients. J Neurol Sci 254:9–16

    Article  CAS  PubMed  Google Scholar 

  9. Zhou J, Sutherland ML (2004) Glutamate transporter cluster formation in astrocytic processes regulates glutamate uptake activity. J Neurosci 24:6301–6306

    Article  CAS  PubMed  Google Scholar 

  10. Sheldon AL, Robinson MB (2007) The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. Neurochem Int 51:333–355

    Article  CAS  PubMed  Google Scholar 

  11. Robinson MB (2002) Regulated trafficking of neurotransmitter transporters: common notes but different melodies. J Neurochem 80:1–11

    Article  CAS  PubMed  Google Scholar 

  12. Vermeiren C, Najimi M, Vanhoutte N et al (2005) Acute up-regulation of glutamate uptake mediated by mGluR5a in reactive astrocytes. J Neurochem 94:405–416

    Article  CAS  PubMed  Google Scholar 

  13. Maragakis NJ, Rothstein JD (2006) Mechanisms of disease: astrocytes in neurodegenerative disease. Nat Clin Pract Neurol 2:679–689

    Article  CAS  PubMed  Google Scholar 

  14. Ridet JL, Malhotra SK, Privat A et al (1997) Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 20:570–577

    Article  CAS  PubMed  Google Scholar 

  15. O’Shea RD, Lau CL, Farso MC et al (2006) Effects of lipopolysaccharide on glial phenotype and activity of glutamate transporters: evidence for delayed up-regulation and redistribution of GLT-1. Neurochem Int 48:604–610

    PubMed  Google Scholar 

  16. Zagami CJ, Beart PM, Wallis N et al (2009) Oxidative and excitotoxic insults exert differential effects on spinal motoneurons and astrocytic glutamate transporters: Implications for the role of astrogliosis in amyotrophic lateral sclerosis. Glia 57:119–135

    Article  PubMed  Google Scholar 

  17. Zagami CJ, O’Shea RD, Lau CL et al (2005) Regulation of glutamate transporters in astrocytes: evidence for a relationship between transporter expression and astrocytic phenotype. Neurotox Res 7:143–149

    Article  CAS  PubMed  Google Scholar 

  18. Goldman JE, Abramson B (1990) Cyclic AMP-induced shape changes of astrocytes are accompanied by rapid depolymerization of actin. Brain Res 528:189–196

    Article  CAS  PubMed  Google Scholar 

  19. Schlag BD, Vondrasek JR, Munir M et al (1998) Regulation of the glial Na + -dependent glutamate transporters by cyclic AMP analogs and neurons. Mol Pharmacol 53:355–369

    CAS  PubMed  Google Scholar 

  20. Bridges RJ, Esslinger CS (2005) The excitatory amino acid transporters: pharmacological insights on substrate and inhibitor specificity of the EAAT subtypes. Pharmacol Ther 107:271–285

    Article  CAS  PubMed  Google Scholar 

  21. Guiramand J, Martin A, de Jesus Ferreira MC et al (2005) Gliotoxicity in hippocampal cultures is induced by transportable, but not by nontransportable, glutamate uptake inhibitors. J Neurosci Res 81:199–207

    Article  CAS  PubMed  Google Scholar 

  22. O’Shea RD, Fodera MV, Aprico K et al (2002) Evaluation of drugs acting at glutamate transporters in organotypic hippocampal cultures: new evidence on substrates and blockers in excitotoxicity. Neurochem Res 27:5–13

    Article  PubMed  Google Scholar 

  23. Aprico K, Beart PM, Crawford D et al (2004) Binding and transport of [3H](2S, 4R)- 4-methylglutamate, a new ligand for glutamate transporters, demonstrate labeling of EAAT1 in cultured murine astrocytes. J Neurosci Res 75:751–759

    Article  CAS  PubMed  Google Scholar 

  24. Re DB, Boucraut J, Samuel D et al (2003) Glutamate transport alteration triggers differentiation-state selective oxidative death of cultured astrocytes: a mechanism different from excitotoxicity depending on intracellular GSH contents. J Neurochem 85:1159–1170

    Article  CAS  PubMed  Google Scholar 

  25. Kuhn TB, Meberg PJ, Brown MD et al (2000) Regulating actin dynamics in neuronal growth cones by ADF/cofilin and rho family GTPases. J Neurobiol 44:126–144

    Article  CAS  PubMed  Google Scholar 

  26. Davies LP, Johnston GA (1976) Uptake and release of D- and L-aspartate by rat brain slices. J Neurochem 26:1007–1014

    Article  CAS  PubMed  Google Scholar 

  27. Shimamoto K, Lebrun B, Yasuda-Kamatani Y et al (1998) DL-threo-beta-benzyloxyaspartate, a potent blocker of excitatory amino acid transporters. Mol Pharmacol 53:195–201

    CAS  PubMed  Google Scholar 

  28. O’Shea RD, Lau CL, Sheean RK et al. (2009) Astrocyte biology, phenotype and EAAT activity. J Neurochem. 110(Suppl 2):85

    Google Scholar 

Download references

Acknowledgments

Supported by the NH&MRC Australia (#509319). CLL and PMB acknowledge receipt of Dora Lush Postgraduate Scholarship and Research Fellowship from the NH&MRC, respectively. Gifts of antibodies are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip M. Beart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lau, C.L., Beart, P.M. & O’Shea, R.D. Transportable and Non-transportable Inhibitors of L-glutamate Uptake Produce Astrocytic Stellation and Increase EAAT2 Cell Surface Expression. Neurochem Res 35, 735–742 (2010). https://doi.org/10.1007/s11064-010-0130-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0130-6

Keywords

Navigation