Skip to main content

Advertisement

Log in

Expression of l-Serine Biosynthetic Enzyme 3-Phosphoglycerate Dehydrogenase (Phgdh) and Neutral Amino Acid Transporter ASCT1 Following an Excitotoxic Lesion in the Mouse Hippocampus

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The nonessential amino acid l-serine functions as a glia-derived trophic factor and strongly promotes the survival and differentiation of cultured neurons. The l-serine biosynthetic enzyme 3-phosphoglycerate dehydrogenase (Phgdh) and the small neutral amino acid transporter ASCT1 are preferentially expressed in specific glial cells in the brain. However, their roles in pathological progression remain unclear. We examined the expression of Phgdh and ASCT1 in kainic acid (KA)-induced neurodegeneration of the mouse hippocampus using immunohistochemistry and Western blots. Our quantitative analysis revealed that Phgdh and ASCT1 were constitutively expressed in the normal brain and transiently upregulated by KA-treatment. At the cellular level, Phgdh was expressed in astrocytes in control and in KA-treated mice while ASCT1 that was expressed primarily in the neurons of the normal brain appeared also in activated astrocytes in KA treated mouse brain. The preferential glial expression of ASCT1 was consistent with that of Phgdh. These results demonstrate injury-induced changes in Phgdh and ASCT1 expression. It is hypothesized that the secretion of l-serine is regulated by astrocytes in response to toxic molecules such as glutamate and free radicals that promote neurodegeneration, and may correspond to the level of l-serine needed for neuronal survival and glial activation during brain insults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Armano S, Coco S, Bacci A et al (2002) Localization and functional relevance of system A neutral amino acid transporters in cultured hippocampal neurons. J Biol Chem 277:10467–10473. doi:10.1074/jbc.M110942200

    Article  CAS  PubMed  Google Scholar 

  2. Arriza JL, Kavanaugh MP, Fairman WA et al (1993) Cloning and expression of a human neutral amino acid transporter with structural similarity to the glutamate transporter gene family. J Biol Chem 268(21):15329–15332

    CAS  PubMed  Google Scholar 

  3. Beal MF (1992) Mechanisms of excitotoxicity in neurologic diseases. FASEB J 6(15):3338–3344

    CAS  PubMed  Google Scholar 

  4. Chauhry FA, Schmitz D, Reimer RJ et al (2002) Glutamine uptake by neurons: interaction of protons with system A transporters. J Neurosci 22:62–72

    Google Scholar 

  5. Chen Y, Swanson RA (2003) Astrocytes and brain injury. J Cereb Blood Flow Metab 23(2):137–149. doi:10.1097/00004647-200302000-00001

    Article  PubMed  Google Scholar 

  6. de Koning TJ, Duran M, Dorland L et al (1998) Beneficial effects of l-serine and glycine in the management of seizures in 3-phosphoglycerate dehydrogenase deficiency. Ann Neurol 44(2):261–265. doi:10.1002/ana.410440219

    Article  PubMed  Google Scholar 

  7. de Koning TJ, Duran M, Van Maldergem L et al (2002) Congenital microcephaly and seizures due to 3-phosphoglycerate dehydrogenase deficiency: outcome of treatment with amino acids. J Inherit Metab Dis 25(2):119–125. doi:10.1023/A:1015624726822

    Article  PubMed  Google Scholar 

  8. Furuya S, Watanabe M (2003) Novel neuroglial and glioglial relationships mediated by l-Serine metabolism. Arch Histol Cytol 66(2):109–121. doi:10.1679/aohc.66.109

    Article  CAS  PubMed  Google Scholar 

  9. Furuya S, Tabata T, Mitoma J et al (2000) l-Serine and glycine serve as major astroglia-derived trophic factors for cerebellar Purkinje neurons. Proc Natl Acad Sci USA 97(21):11528–11533. doi:10.1073/pnas.200364497

    Article  CAS  PubMed  Google Scholar 

  10. Hashimoto Y, Sadamoto Y, Konno A et al (2004) Distribution of neutral amino acid transporter ASCT1 in the non-neuronal tissues of mice. Jpn J Vet Res 52:113–124

    PubMed  Google Scholar 

  11. Jaeken J, Detheux M, Van Maldergem L et al (1996) 3-Phosphoglycerate dehydrogenase deficiency: an inborn error of serine biosynthesis. Arch Dis Child 74(6):542–545

    Article  CAS  PubMed  Google Scholar 

  12. Jeon GS, Park SW, Kim DW et al (2004) Glial expression of the 90-kDa heat shock protein (HSP90) and the 94-kDa glucose-regulated protein (GRP94) following an excitotoxic lesion in the mouse hippocampus. Glia 48:250–258. doi:10.1002/glia.20075

    Article  PubMed  Google Scholar 

  13. Jeon GS, Byun HJ, Park SK et al (2006) Induction of transcription factor A-myb expression in reactive astrocytes following an excitotoxic lesion in the mouse hippocampus. Neurochem Res 31(11):1371–1374. doi:10.1007/s11064-006-9184-x

    Article  CAS  PubMed  Google Scholar 

  14. Jeon GS, Park SK, Park SW et al (2008) Glial expression of interleukin-18 and its receptor after excitotoxic damage in the mouse hippocampus. Neurochem Res 33(1):179–184. doi:10.1007/s11064-007-9434-6

    Article  CAS  PubMed  Google Scholar 

  15. Klomp LW, de Koning TJ, Malingre HE et al (2000) Molecular characterization of 3-phosphoglycerate dehydrogenase deficiency-a neurometabolic disorder associated with reduced l-serine biosynthesis. Am J Hum Genet 67(6):1389–1399. doi:10.1086/316886

    Article  CAS  PubMed  Google Scholar 

  16. Laursen SE, Belknap JK (1986) Intracerebroventricular injections in mice. Some methodological refinements. J Pharmacol Methods 16:355–357. doi:10.1016/0160-5402(86)90038-0

    Article  CAS  Google Scholar 

  17. Mitchell J, Sundstrom LE, Wheal HV (1993) Microglial and astrocytic cell responses in the rat hippocampus after an intracerebroventricular kainic acid injection. Exp Neurol 121:224–230. doi:10.1006/exnr.1993.1089

    Article  CAS  PubMed  Google Scholar 

  18. Mitoma J, Furuya S, Hirabayashi Y (1998) A novel metabolic communication between neurons and astrocytes: non-essential amino acid l-serine released from astrocytes is essential for developing hippocampal neurons. Neurosci Res 30(2):195–199. doi:10.1016/S0168-0102(97)00113-2

    Article  CAS  PubMed  Google Scholar 

  19. Nadler JV, Perry BW, Gentry C et al (1980) Degeneration of hippocampal CA3 pyramidal cells induced by intraventricular kainic acid. J Comp Neurol 192:333–359. doi:10.1002/cne.901920209

    Article  CAS  PubMed  Google Scholar 

  20. Parathath SR, Parathath S, Tsirka SE (2006) Nitric oxide mediates neurodegeneration and breakdown of the blood-brain barrier in tPA-dependent excitotoxic injury in mice. J Cell Sci 119(Pt 2):339–349. doi:10.1242/jcs.02734

    Article  CAS  PubMed  Google Scholar 

  21. Reimer RJ, Chaudhry FA, Gray AT et al (2000) Amino acid transport system A resembles system N in sequence but differs in mechanism. Proc Natl Acad Sci USA 97:7715–7720. doi:10.1073/pnas.140152797

    Article  CAS  PubMed  Google Scholar 

  22. Rothman SM, Olney JW (1986) Glutamate and the pathophysiology of hypoxic–ischemic brain damage. Ann Neurol 19(2):105–111. doi:10.1002/ana.410190202

    Article  CAS  PubMed  Google Scholar 

  23. Sakai K, Shimizu H, Koike T et al (2003) Neutral amino acid transporter ASCT1 is preferentially expressed in L-Ser-synthetic/storing glial cells in the mouse brain with transient expression in developing capillaries. J Neurosci 23(2):550–560

    CAS  PubMed  Google Scholar 

  24. Savoca R, Ziegler U, Sonderegger P (1995) Effects of l-serine on neurons in vitro. J Neurosci Methods 61(1–2):159–167. doi:10.1016/0165-0270(95)00038-V

    Article  CAS  PubMed  Google Scholar 

  25. Shafqat S, Tamarappoo BK, Kilberg MS et al (1993) Cloning and expression of a novel Na(+)-dependent neutral amino acid transporter structurally related to mammalian Na+/glutamate cotransporters. J Biol Chem 268(21):15351–15355

    CAS  PubMed  Google Scholar 

  26. Sperk G (1994) Kainic acid seizures in the rat. Prog Neurobiol 42(1):1–32. doi:10.1016/0301-0082(94)90019-1

    Article  CAS  PubMed  Google Scholar 

  27. Sugishita H, Kuwabara Y, Toku K et al (2001) l-Serine regulates the activities of microglial cells that express very low level of 3-phosphoglycerate dehydrogenase, an enzyme for l-serine biosynthesis. J Neurosci Res 64(4):392–401. doi:10.1002/jnr.1090

    Article  CAS  PubMed  Google Scholar 

  28. Varoqui H, Zhu H, Yao D et al (2000) Cloning and functional identification of a neuronal glutamine transporter. J Biol Chem 275:4049–4054. doi:10.1074/jbc.275.6.4049

    Article  CAS  PubMed  Google Scholar 

  29. Weiss MD, Derazi S, Kilberg MS et al (2001) Ontogeny and localization of the neutral amino acid transporter ASCT1 in rat brain. Brain Res Dev Brain Res 130(2):183–190. doi:10.1016/S0165-3806(01)00250-4

    Article  CAS  PubMed  Google Scholar 

  30. Yamagata K, Shoji Y, Terashima T et al (2006) Glutamate reduces secretion of l-serine in astrocytes isolated from stroke-prone spontaneously hypertensive rats. Neuroscience 143(3):729–737. doi:10.1016/j.neuroscience.2006.08.050

    Article  CAS  PubMed  Google Scholar 

  31. Yamamoto T, Nishizaki I, Nukada T et al (2004) Functional identification of ASCT1 neutral amino acid transporter as the predominant system for the uptake of l-serine in rat neurons in primary culture. Neurosci Res 49(1):101–111. doi:10.1016/j.neures.2004.02.004

    Article  CAS  PubMed  Google Scholar 

  32. Yamasaki M, Yamada K, Furuya S et al (2001) 3-Phosphoglycerate dehydrogenase, a key enzyme for l-serine biosynthesis, is preferentially expressed in the radial glia/astrocyte lineage and olfactory ensheathing glia in the mouse brain. J Neurosci 21(19):7691–7704

    CAS  PubMed  Google Scholar 

  33. Yamashita N, Sakai K, Furuya S et al (2003) Selective expression of l-serine synthetic enzyme 3PGDH in schwann cells, perineuronal glia, and endoneurial fibroblasts along rat sciatic nerves and its upregulation after crush injury. Arch Histol Cytol 66(5):429–436. doi:10.1679/aohc.66.429

    Article  CAS  PubMed  Google Scholar 

  34. Yoshida K, Furuya S, Osuka S et al (2004) Targeted disruption of the mouse 3-phosphoglycerate dehydrogenase gene causes severe neurodevelopmental defects and results in embryonic lethality. J Biol Chem 279(5):3573–3577. doi:10.1074/jbc.C300507200

    Article  CAS  PubMed  Google Scholar 

  35. Zerangue N, Kavanaugh MP (1996) ASCT-1 is a neutral amino acid exchanger with chloride channel activity. J Biol Chem 271(45):27991–27994. doi:10.1074/jbc.271.45.27991

    Article  CAS  PubMed  Google Scholar 

  36. Zhang L, Ong WY, Lee T (1999) Induction of P-glycoprotein expression in astrocytes following intracerebroventricular kainate injections. Exp Brain Res 126:509–516. doi:10.1007/s002210050759

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the second stage Brain Korea 21 Project in 2008, a grant (M103KV010018 04K2201 01850) from Brain Research Center of the 21st Century Frontier Research Program funded by the Ministry of Science and Technology, the Republic of Korea, a grant no. 04-2007-076 from the Seoul National University Hospital Research Fund. The authors thank Dr. M. Watanabe, Hokkaido University School of Medicine, Japan, for the Phgdh antibody.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sa Sun Cho.

Additional information

G. S. Jeon and D. H. Choi contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeon, G.S., Choi, D.H., Lee, H.N. et al. Expression of l-Serine Biosynthetic Enzyme 3-Phosphoglycerate Dehydrogenase (Phgdh) and Neutral Amino Acid Transporter ASCT1 Following an Excitotoxic Lesion in the Mouse Hippocampus. Neurochem Res 34, 827–834 (2009). https://doi.org/10.1007/s11064-008-9831-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9831-5

Keywords

Navigation