Skip to main content
Log in

Harmonic Mean of Kullback–Leibler Divergences for Optimizing Multi-Class EEG Spatio-Temporal Filters

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

The common spatial patterns (CSP) is a classical approach to spatial filtering of electroencephalogram (EEG) used in brain-computer interfaces. The local temporal common spatial patterns (LTCSP) method is a temporal generalization of CSP. Both CSP and LTCSP, however, are only suitable for the two-class paradigm. In this paper, we address this limitation under the framework of Kullback–Leibler (KL) divergence. We show that CSP is equivalent to maximizing the symmetric KL divergence of two class-conditional probability density functions under the Gaussian assumption. This analysis establishes a probabilistic interpretation for CSP, as well as LTCSP. Based on the KL formulation, we propose a new multi-class extension to optimizing the spatio-temporal filters by maximizing the harmonic mean of all pairs of symmetric KL divergences between the filtered class-conditional densities. Experiments of classification of multiple EEG classes on the data sets of BCI competition show the effectiveness of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arvaneh M, Guan C, Ang KK, Quek C (2011) Optimizing the channel selection and classification accuracy in EEG-based BCI. IEEE Trans Biomed Eng 58(6): 1865–1873

    Article  Google Scholar 

  2. Bashashati A, Fatourechi M, Ward RK, Birch GE (2007) A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals. J Neural Eng 4(2): R32–R57

    Article  Google Scholar 

  3. Bian W, Tao D (2008) Harmonic mean for subspace selection. In: Proceedings of IEEE 19th International Conference of Pattern Recognition

  4. Blankertz B, Müller K-R, Krusienski DJ, Schalk G, Wolpaw JR, Schlögl A, Pfurtscheller G, Millán JR, Schröder M, Birbaumer N (2006) The BCI competition III: validating alternative approaches to actual BCI problems. IEEE Trans Neural Syst Rehabil Eng 14(2): 153–159

    Article  Google Scholar 

  5. Blankertz B, Tomioka R, Lemm S, Kawanabe M, Müller K-R (2008) Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Process Mag 25(1): 41–56

    Article  Google Scholar 

  6. Boyd S, Vandenberghe L (2009) Convex optimization. Cambridge University Press, Cambridge

    Google Scholar 

  7. Brunner C, Naeem M, Leeb R, Graimann B, Pfurtscheller G (2007) Spatial filtering and selection of optimized components in four class motor imagery EEG data using independent components analysis. Pattern Recognit Lett 28(8): 957–964

    Article  Google Scholar 

  8. Cleveland S (1979) Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc 74: 829–836

    Article  MathSciNet  MATH  Google Scholar 

  9. Cover TM, Thomas JA (1991) Elements of information theory. Wiley, New York

    Book  MATH  Google Scholar 

  10. Dornhege G, Blankertz B, Curio G, Müller K-R (2004) Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multi-class paradigms. IEEE Trans Biomed Eng 51(6): 993–1002

    Article  Google Scholar 

  11. Dornhege G, Krauledat M, Müller K-R, Blankertz B (2007) General signal processing and machine learning tools for BCI. In: Toward brain-computer interfacing. MIT Press, Cambridge, pp 207–233

  12. Golub G, Loan van C (1996) Matrix computations. Johns Hopkins University Press, Baltimore

    MATH  Google Scholar 

  13. Gouy-Pailler C, Congedo M, Brunner C, Jutten C, Pfurtscheller G (2010) Nonstationary brain source separation for multiclass motor imagery. IEEE Trans Biomed Eng 57(2): 469–478

    Article  Google Scholar 

  14. Grosse-Wentrup M, Buss M (2008) Multiclass common spatial patterns and information theoretic feature extraction. IEEE Trans Biomed Eng 55(8): 1991–2000

    Article  Google Scholar 

  15. Lemm S, Blankertz B, Curio G, Müller K-R (2005) Spatio-spectral filters for improved classification of single trial EEG. IEEE Trans Biomed Eng 52(9): 1541–1548

    Article  Google Scholar 

  16. Lotte F, Guan C (2011) Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms. IEEE Trans Biomed Eng 58(2): 355–362

    Article  Google Scholar 

  17. Li Y, Gao X, Gao S (2004) Classification of single-trial electroencephalogram during finger movement. IEEE Trans Biomed Eng 51(6): 1019–1025

    Article  Google Scholar 

  18. McFarland DJ, Anderson CW, Müller K-R, Schlögl A, Krusienski DJ (2006) BCI meeting 2005: workshop on BCI signal processing: feature extraction and translation. IEEE Trans Neural Syst Rehabil Eng 14(2): 135–138

    Article  Google Scholar 

  19. Müller-Gerking J, Pfurtscheller G, Flyvbjerg H (1999) Designing optimal spatial filters for single-trial EEG classification in a movement task. Clin Neurophys 110(5): 787–798

    Article  Google Scholar 

  20. Parra LC, Spence CD, Gerson AD, Sajda P (2005) Recipes for linear analysis of EEG. Neuroimage 28(2): 326–341

    Article  Google Scholar 

  21. Ramoser H, Müller-Gerking J, Pfurtscheller G (2000) Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans Rehabil Eng 8(4): 441–446

    Article  Google Scholar 

  22. Tao D, Li X, Wu X, Maybank SJ (2009) Geometric mean for subspace selection. IEEE Trans Pattern Anal Mach Intell 31(2): 260–274

    Article  Google Scholar 

  23. Wang H, Tang Q, Zheng W (2012) L1-norm-based common spatial patterns. IEEE Trans Biomed Eng 59(3): 653–662

    Article  Google Scholar 

  24. Wang H, Zheng W (2008) Local temporal common spatial patterns for robust single-trial EEG classification. IEEE Trans Neural Syst Rehabil Eng 16(2): 131–139

    Article  Google Scholar 

  25. Webb AR (1999) Statistical pattern recognition. Oxford University Press, London

    MATH  Google Scholar 

  26. Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain-computer interfaces for communication and control. Clin Neurophys 113(6): 767–791

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haixian Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H. Harmonic Mean of Kullback–Leibler Divergences for Optimizing Multi-Class EEG Spatio-Temporal Filters. Neural Process Lett 36, 161–171 (2012). https://doi.org/10.1007/s11063-012-9228-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-012-9228-y

Keywords

Navigation