Skip to main content
Log in

Changes in the Levels of Neurospecific Proteins and Indices of Apoptosis in the Rat Cornea at Chronic Ethanol Consumption: Protective Effects of Thiamine Administration

  • Published:
Neurophysiology Aims and scope

Long-term ethanol (EtOH) consumption may induce damage to corneal nerves leading to the development of ocular diseases, vision impairments, and possible blindness. We investigated levels of neurospecific proteins and apoptotic regulators in the cornea of rats chronically exposed to ethyl alcohol and also effects of high-dose thiamine (vitamin B1) administration on these indices. Albino male rats consumed 15 % (v/v) EtOH solution as a drinking liquid for 9 months. One week before the termination of the experiment, a part of EtOH-exposed rats was given thiamine per os (25 mg/kg daily for a week). The functional state of corneal nerves and their satellite cells was assessed by measuring levels of specific biomarkers (Western blot analysis), including a nuclear marker, NeuN, neurofilament heavy subunit 200 (NF-H), and tau-protein for neurons, glial fibrillary acidic protein (GFAP) for glial satellite cells, and ionized calcium binding adaptor molecule 1 (Iba-1) as microglia/macrophage specific index. The Bcl-xL/Bax ratio was measured to explore the apoptosis pathway regulation. It was found that EtOH long-lasting consumption caused a decrease in the Bcl-xL/Bax ratio and reduction in the NeuN, which was indicative of enhanced apoptosis and neurodegeneration in the injured cornea. Ethanol consumption induced accumulation of hyperphosphorylated tau protein and loss of neurofilament NF-H subunit (signs of the tauopathy development and axonal degeneration in the corneal sensory nerves). Eventually, we demonstrated that EtOH significantly upregulated corneal GFAP that might be considered as a hallmark of glia satellite cell activation in response to alcohol-induced neurodegeneration. High-dose thiamine administration noticeably alleviated neuropathological changes in the rat cornea induced by chronic EtOH ingestion through diminishing the intensity of apoptosis, reducing excessive glial activation, stabilizing the neural cell cytoskeleton, and modulating the macrophage function. Our data indicate that thiamine high-dose administration could be beneficial for minimizing the neurological consequences of long-term ethyl alcohol abuse in the cornea and may provide cost-effective and productive route to the respective interventions at ocular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. S. Shaheen, M. Bakir, and S. Jain, “Corneal nerves in health and disease,” Surv. Ophthalmol., 59, No. 3, 263–285 (2014); doi:https://doi.org/10.1016/j.survophthal.2013.09.002.

    Article  PubMed  PubMed Central  Google Scholar 

  2. G. Guidoboni, R. Sacco, M. Szopos, et al., “Neurodegenerative disorders of the eye and of the brain: A perspective on their fluid-dynamical connections and the potential of mechanism-driven modeling,” Front. Neurosci., 14, 566428 (2020); doi: https://doi.org/10.3389/fnins.2020.566428.

    Article  PubMed  PubMed Central  Google Scholar 

  3. S. Li, S. Shi, B. Luo, et al., “Tauopathy induces degeneration and impairs regeneration of sensory nerves in the cornea,” Exp. Eye Res., 215, 108900 (2022); doi: https://doi.org/10.1016/j.exer.2021.108900.

    Article  CAS  PubMed  Google Scholar 

  4. G. Ponirakis., R. Ghandi, A. Ahmed, et al., “Abnormal corneal nerve morphology and brain volume in patients with schizophrenia,” Sci. Rep., 12, 1870 (2022); https://doi.org/10.1038/s41598-022-05609-w.

  5. S. Karimi, A. Arabi, and T. Shahraki, “Alcohol and the eye,” J. Ophthalmic. Vis. Res., 16, No. 2, 260–270 (2021); doi: https://doi.org/10.18502/jovr.v16i2.9089.

    Article  PubMed  PubMed Central  Google Scholar 

  6. J. H. Kim, J. H. Kim, W. H. Nam, et al., “Oral alcohol administration disturbs tear film and ocular surface,” Ophthalmology, 119, No. 5, 965–971 (2012); doi: https://doi.org/10.1016/j.ophtha.2011.11.015.

    Article  PubMed  Google Scholar 

  7. X. Xie, K. Feng, J. Wang, et al., “Comprehensive visual electrophysiological measurements discover crucial changes caused by alcohol addiction in humans: Clinical values in early prevention of alcoholic vision decline,” Front. Neural. Circuits, 16, 912883 (2022); doi: https://doi.org/10.3389/fncir.2022.912883.

    Article  PubMed  PubMed Central  Google Scholar 

  8. X. Ren, Y. Chou, X. Jiang, et al., “Effects of oral vitamin B1 and mecobalamin on dry eye disease,” J. Ophthalmol., 2020, 9539674 (2020); https://doi.org/10.1155/2020/9539674.

  9. T. Ucak, Y. Karakurt, G. Tasli, et al., “The effects of thiamine pyrophosphate on ethanol induced optic nerve damage,” BMC Pharmacol. Toxicol., 20, No. 1, 40 (2019); doi:https://doi.org/10.1186/s40360-019-0319-5.

  10. G. Sechi and A. Serra, “Wernicke’s encephalopathy: new clinical settings and recent advances in diagnosis and management,” Lancet. Neurol., 6, No. 5, 442–455 (2007); https://doi.org/10.1016/S1474-4422(07)70104-7.

    Article  CAS  PubMed  Google Scholar 

  11. Y. M. Parkhomenko, A. S. Pavlova, and O. A. Mezhenskaya, “Mechanisms responsible for the high sensitivity of neural cells to vitamin B1 deficiency,” Neurophysiology, 48, 429–448 (2016); https://doi.org/10.1007/s11062-017-9620-3.

  12. M. Hrubša, T. Siatka, I. Nejmanová, et al., “Biological properties of vitamins of the B-complex, Part 1: Vitamins B1, B2, B3, and B5,” Nutrients, 14, No. 3, 484 (2022); doi:https://doi.org/10.3390/nu14030484.

    Article  CAS  Google Scholar 

  13. R. Mancinelli and M. Ceccanti, “Biomarkers in alcohol misuse: Their role in the prevention and detection of thiamine deficiency,” Alcohol Alcohol., 44, No. 2, 177–182 (2009); https://doi.org/10.1093/alcalc/agn117.

    Article  CAS  PubMed  Google Scholar 

  14. J. Peragallo, V. Biousse, and N. J. Newman, “Ocular manifestations of drug and alcohol abuse,” Curr. Opin. Ophthalmol., 24, No. 6, 566–573 (2013); doi: https://doi.org/10.1097/icu.0b013e3283654db2.

    Article  PubMed  PubMed Central  Google Scholar 

  15. A. S. Hazell, “Astrocytes are a major target in thiamine deficiency and Wernicke’s encephalopathy,” Neurochem. Int., 55, No. 1/3, 129–135 (2009); doi: https://doi.org/10.1016/j.neuint.2009.02.020.

    Article  CAS  PubMed  Google Scholar 

  16. K. Zera and J Zastre, “Thiamine deficiency activates hypoxia inducible factor-1α to facilitate pro-apoptotic responses in mouse primary astrocytes,” PloS One, 12, No. 10, e0186707 (2017); doi:https://doi.org/10.1371/journal.pone.0186707.

    Article  CAS  Google Scholar 

  17. O. S. Pavlova, A. A. Tykhomyrov, O. A. Mejenskaya, et al., High thiamine dose restores levels of specific astroglial proteins in rat brain astrocytes affected by chronic ethanol consumption,” Ukr. Biochem. J., 91, No. 4, 41–49 (2019).doi: https://doi.org/10.15407/ubj91.04.041.

    Article  CAS  Google Scholar 

  18. P. Toledo Nunes, L. C. Vedder, T. Deak, and L. M. Savage, “A pivotal role for thiamine deficiency in the expression of neuroinflammation markers in models of alcohol-related brain damage,” Alcohol. Clin. Exp. Res., 43, No. 3, 425–438 (2019); https://doi.org/10.1111/acer.13946.

  19. C. M. Stoscheck “Quantitation of protein,” Methods Enzymol., 182, 50–68 (1990); doi:https://doi.org/10.1016/0076-6879(90)82008-p

    Article  CAS  PubMed  Google Scholar 

  20. A. Marquez, L. S. Guernsey, K. E. Frizzi, et al., “Tau associated peripheral and central neurodegeneration: Identification of an early imaging marker for tauopathy,” Neurobiol. Dis., 151, 105273 (2021); doi:https://doi.org/10.1016/j.nbd.2021.105273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. J. Liu, C. Guo, P. Hao, et al., “Protection effect of thymosin β4 on ethanol injury in corneal stromal keratocyte,” BMC Ophthalmol., 22, No. 1, 33 (2022); doi:https://doi.org/10.1186/s12886-022-02255-8

  22. J. Y. Oh, J. M. Yu, and J. H. Ko. “Analysis of ethanol effects on corneal epithelium,” Invest. Ophthalmol. Vis. Sci., 54, No. 6, 3852–3856 (2013); doi:https://doi.org/10.1167/iovs.13-11717

    Article  CAS  PubMed  Google Scholar 

  23. C. C. Chen, S. W. Liou, C. C. Chen, et al., “Coenzyme Q10 reduces ethanol-induced apoptosis in corneal fibroblasts,” PLoS One, 6, No. 4, e19111 (2011); doi:https://doi.org/10.1371/journal.pone.0019111

    Article  CAS  Google Scholar 

  24. H. Y. Lee, N. Naha, J. H. Kim, et al., “Age- and areadependent distinct effects of ethanol on Bax and Bcl-2 expression in prenatal rat brain,” J. Microbiol. Biotechnol., 18, No 9, 1590–1598 (2008).

    CAS  PubMed  Google Scholar 

  25. J. Han, L. Gao, J. Dong, et al., “Dopamine attenuates ethanol-induced neuroapoptosis in the developing rat retina via the cAMP/PKA pathway,” Mol. Med. Rep., 16, No. 2, 1982-1990 (2017); https://doi.org/10.3892/mmr.2017.6823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. C. S. Medeiros and M. R. Santhiago, “Corneal nerves anatomy, function, injury and regeneration,” Exp. Eye Res., 200, 108243 (2020); doi:https://doi.org/10.1016/j.exer.2020.108243.

    Article  CAS  PubMed  Google Scholar 

  27. R. M. Lasagni Vitar, P. Rama, and G. Ferrari, “The twofaced effects of nerves and neuropeptides in corneal diseases,” Prog. Retin. Eye Res., 86, 100974 (2022); doi:https://doi.org/10.1016/j.preteyeres.2021.100974.

  28. S. M. Gratton and B. L. Lam., “Visual loss and optic nerve head swelling in thiamine deficiency without prolonged dietary deficiency,” Clin. Ophthalmol., 8, 1021-1024 (2014); doi:https://doi.org/10.2147/OPTH.S64228.

  29. S. M. de la Monte and J. J. Kril, “Human alcohol-related neuropathology,” Acta Neuropathol., 127, No. 1, 71-90 (2014); doi:https://doi.org/10.1007/s00401-013-1233-3.

    Article  CAS  PubMed  Google Scholar 

  30. J. Pawlowski and A. S. Kraft, “Bax-induced apoptotic cell death,” Proc. Natl. Acad. Sci. U. S. A., 97, No. 2, 529-531 (2000); doi: https://doi.org/10.1073/pnas.97.2.529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. E. H. Cheng, M. C. Wei, S. Weiler, et al., “BCL-2, BCLX(L) sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis,” Mol. Cell., 8, No. 3, 705–711 (2001); doi: https://doi.org/10.1016/s1097-2765(01)00320-3.

    Article  CAS  PubMed  Google Scholar 

  32. I. M. Unal-Cevik, Kilinç, Y. Gürsoy-Ozdemir, G. Gurer, and T. Dalkara, “Loss of NeuN immunoreactivity after cerebral ischemia does not indicate neuronal cell loss: a cautionary note,” Brain Res., 1015, Nos. 1/2, 169–174 (2004); doi:https://doi.org/10.1016/j.brainres.2004.04.032.

  33. V. V. Gusel’nikova and D. E. Korzhevskiy, “NeuN as a neuronal nuclear antigen and neuron differentiation marker,” Acta Naturae, 7, No. 2, 42–47 (2015).

  34. J. R. Cannon and J. T. Greenamyre, “NeuN is not a reliable marker of dopamine neurons in rat substantia nigra,” Neurosci. Lett., 464, No.1, 14–17 (2009); doi:https://doi.org/10.1016/j.neulet.2009.08.023.

    Article  CAS  PubMed  Google Scholar 

  35. B. J. Song, M. Akbar, M. A. Abdelmegeed, et al., “Mitochondrial dysfunction and tissue injury by alcohol, high fat, nonalcoholic substances and pathological conditions through post-translational protein modifications,” Redox Biol., 3, 109–123 (2014); doi:https://doi.org/10.1016/j.redox.2014.10.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. D. Liu, Z. Ke, and J. Luo, “Thiamine deficiency and neurodegeneration: the interplay among oxidative stress, endoplasmic reticulum stress, and autophagy,” Mol. Neurobiol., 54, No. 7, 5440–5448 (2017); doi:https://doi.org/10.1007/s12035-016-0079-9.

    Article  CAS  PubMed  Google Scholar 

  37. M. Ergül and A. Ş. Taşkıran, “Thiamine protects glioblastoma cells against glutamate toxicity by suppressing oxidative/endoplasmic reticulum stress,” Chem. Pharm. Bull (Tokyo)., 69, No. 9, 832-839 (2021); https://doi.org/10.1248/cpb.c21-00169.

    Article  PubMed  Google Scholar 

  38. Y. Kim, H. Choi, W. Lee, et al., “Caspase-cleaved tau exhibits rapid memory impairment associated with tau oligomers in a transgenic mouse model,” Neurobiol. Dis., 87, 19–28 (2016); doi: https://doi.org/10.1016/j.nbd.2015.12.006.

    Article  CAS  PubMed  Google Scholar 

  39. A. Yuan, M. V. Rao, Veeranna, and R. A. Nixon, “Neurofilaments and neurofilament proteins in health and disease,” Cold Spring Harb. Perspect. Biol., 9, No. 4, a018309 (2017); doi:https://doi.org/10.1101/cshperspect.a018309.

  40. D. E. Saunders, J. A. DiCerbo, J. R. Williams, and J. H. Hannigan, “Alcohol reduces neurofilament protein levels in primary cultured hippocampal neurons,” Alcohol, 14, No. 5, 519–526 (1997); doi:https://doi.org/10.1016/s0741-8329(97)00043-8.

    Article  CAS  PubMed  Google Scholar 

  41. P. Barbier, O. Zejneli, M. Martinho, et al., “Role of Tau as a microtubule-associated protein: Structural and functional aspects,” Front. Aging Neurosci., 11, 204 (2019); doi:https://doi.org/10.3389/fnagi.2019.00204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. T. Guo, W. Noble, and D. P. Hanger, “Roles of tau protein in health and disease,” Acta Neuropathol., 133, 665–704 (2017); https://doi.org/10.1007/s00401-017-1707-9.

  43. G. B. Zha, M. Shen, X. S. Gu, and S. Yi, “Changes in microtubule-associated protein tau during peripheral nerve injury and regeneration,” Neural Regen. Res., 11, No. 9, 1506–1511 (2016); doi:https://doi.org/10.4103/1673-5374.191227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. H. Jiao, L. E. Downie, X. Huang, et al., “Novel alterations in corneal neuroimmune phenotypes in mice with central nervous system tauopathy,” J Neuroinflammation., 17, No. 1, 136 (2020); doi:https://doi.org/10.1186/s12974-020-01803-7.

  45. C. E. G. Leyns and D. M. Holtzman, “Glial contributions to neurodegeneration in tauopathies,” Mol. Neurodegener., 12, No. 1, 50 (2017); doi:https://doi.org/10.1186/s13024-017-0192-x.

  46. A. F. K. Vizuete, B. H. Mussulini, K. C. Zenki, et al., “Prolonged ethanol exposure alters glutamate uptake leading to astrogliosis and neuroinflammation in adult zebrafish brain,” Neurotoxicology, 88, 57064 (2022); doi:https://doi.org/10.1016/j.neuro.2021.10.014.

    Article  CAS  Google Scholar 

  47. L. F. Eng, R.S. Ghirnikar, and Y. L. Lee, “Glial fibrillary acidic protein: GFAP-thirty-one years (1969-2000),” Neurochem. Res., 25, Nos. 9/10, 1439–1451 (2000); doi:https://doi.org/10.1023/a:1007677003387.

    Article  CAS  PubMed  Google Scholar 

  48. A. A. Tykhomyrov, A. S. Pavlova, and V. S. Nedzvetsky, “Glial fibrillary acidic protein (GFAP): on the 45th anniversary of its discovery,” Neurophysiology, 48, 54–71 (2016); https://doi.org/10.1007/s11062-016-9568-8.

  49. S. Brahmachari, Y. K. Fung, and K. Pahan, “Induction of glial fibrillary acidic protein expression in astrocytes by nitric oxide,” J. Neurosci., 26, No. 18, 4930–4939 (2006); doi:https://doi.org/10.1523/JNEUROSCI.5480-05.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Z. Yang and K. K. Wang, “Glial fibrillary acidic protein: from intermediate filament assembly and gliosis to neurobiomarker,” Trends Neurosci., 38, No. 6, 364–374 (2015); doi:https://doi.org/10.1016/j.tins.2015.04.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. I. Lundgaard, W. Wang, A. Eberhardt, et al., “Beneficial effects of low alcohol exposure, but adverse effects of high alcohol intake on glymphatic function,” Sci. Rep., 8, No. 1, 2246 (2018); doi:https://doi.org/10.1038/s41598-018-20424-y.

  52. H. Dalçik, M. Yardimoglu, S. Filiz, et al., “Chronic ethanol-induced glial fibrillary acidic protein (GFAP) immunoreactivity: an immunocytochemical Observation in various regions of adult rat brain,” Int. J. Neurosci., 119, No. 9, 1303–1318 (2009); doi:https://doi.org/10.1080/00207450802333672.

    Article  CAS  PubMed  Google Scholar 

  53. H. B. Kim, J. Morris, K. Miyashiro, et al., “Astrocytes promote ethanol-induced enhancement of intracellular Ca2+ signals through intercellular communication with neurons,” iScience, 24, No. 5, 102436 (2021); doi:https://doi.org/10.1016/j.isci.2021.102436.

    Article  CAS  Google Scholar 

  54. T. Masuoka, Y. Yamashita, K. Nakano, et al., “Chronic tear deficiency sensitizes transient receptor potential Vanilloid 1-mediated responses in corneal sensory nerves,” Front. Cell. Neurosci., 14, 598678 (2020); doi:https://doi.org/10.3389/fncel.2020.598678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. J. L. Stephenson and M. R. Byers, “GFAP immunoreactivity in trigeminal ganglion satellite cells after tooth injury in rats,” Exp. Neurol., 131, 11–22 (1995); doi: https://doi.org/10.1016/0014-4886(95)90003-9.

    Article  CAS  PubMed  Google Scholar 

  56. S. Zhang, M. Wu, C. Peng, et al., “GFAP expression in injured astrocytes in rats,” Exp. Ther. Med., 14, No. 3, 1905–1908 (2017); doi:https://doi.org/10.3892/etm.2017.4760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. D. Triolo, G. Dina, I. Lorenzetti, et al., “Loss of glial fibrillary acidic protein (GFAP) impairs Schwann cell proliferation and delays nerve regeneration after damage,” J. Cell. Sci., 119, Part 19, 3981–3993 (2006); doi:https://doi.org/10.1242/jcs.03168.

  58. M. A. Stepp, G. Tadvalkar, R. Hakh, and S. Pal-Ghosh, “Corneal epithelial cells function as surrogate Schwann cells for their sensory nerves,” Glia, 65, No. 6, 851-863 (2017); doi:https://doi.org/10.1002/glia.23102.

    Article  PubMed  Google Scholar 

  59. X. Zhang, L. P. Wang, A. Ziober, et al., “Ionized Calcium binding adaptor molecule 1 (IBA1),” Am. J. Clin. Pathol., 156, No. 1, 86–99 (2021); doi:https://doi.org/10.1093/ajcp/aqaa209.

    Article  CAS  PubMed  Google Scholar 

  60. J. K. Loi, Y. O. Alexandre, K. Senthil, et al. “Corneal tissue-resident memory T cells form a unique immune compartment at the ocular surface,” Cell. Rep., 39, No. 8, 110852 (2022); doi:https://doi.org/10.1016/j.celrep.2022.110852.

  61. Q. Li, D. Liu, F. Pan, et al., “Ethanol exposure induces microglia activation and neuroinflammation through TLR4 activation and SENP6 modulation in the adolescent rat hippocampus,” Neural Plast., 2019, 1648736 (2019); doi:https://doi.org/10.1155/2019/1648736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Y. Qazi, G. Wong, B. Monson, et al., “Corneal transparency: genesis, maintenance and dysfunction,” Brain Res Bull., 81, Nos. 2/3, 198–210 (2010); doi: https://doi.org/10.1016/j.brainresbull.2009.05.019.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Tykhomyrov.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlova, O.S., Bilous, V.L., Korsa, V.V. et al. Changes in the Levels of Neurospecific Proteins and Indices of Apoptosis in the Rat Cornea at Chronic Ethanol Consumption: Protective Effects of Thiamine Administration. Neurophysiology 54, 25–36 (2022). https://doi.org/10.1007/s11062-023-09932-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-023-09932-4

Keywords

Navigation