Skip to main content

Advertisement

Log in

Effects of Modeling of Hypercalcemia and β-Amyloid on Cultured Hippocampal Neurons of Rats

  • Published:
Neurophysiology Aims and scope

Alzheimer’s disease (AD) is the most common type of dementia; it is characterized by accumulations of amyloid (Aβ) plaques and neurofibrillary tangles in the brain. Intracellular Ca2+ homeostasis plays an important role in the control of events in the neuronal system, including neurotransmitter release, synaptic plasticity, memory, and neuronal death. Therefore, dysregulation of Ca2+ neuronal homeostasis may play an important role in the AD pathogenesis, as impaired Ca2+ concentrations can cause synaptic deficiency and contribute to the accumulation of Aβ plaques and neurofibrillary tangles. In our in vitro research, we tested the possible involvement of modeled hypercalcemia in the AD development using a hippocampal cell culture treated with Aβ. Our experiments showed that a high Ca2+ level and Aβ in the medium significantly and in a rather similar manner influence hippocampal neuronal viability in the cell culture. These factors decreased the number of alive neurons and intensified apoptotic and necrotic changes. We also compared the effects of the high [Ca2+] and Aβ on intracellular calcium homeostasis in these neurons. As was found under our conditions, modelling of hypercalcemia with 3.0 mM extracellular CaCl2 in the medium resulted in increase in the basal intracellular Ca2+ level in the cultured neurons by 16%, on average, compared to that in the control. The amplitude of calcium responses to depolarization of the cells with 50 mM KCI in the solution increased by 11%, and the Ca2+ content in the endoplasmic reticulum increased by 20%. Restoration of the Ca2+ concentration in the neurons after cell stimulation slowed down considerably. Similar but more intense changes were observed in the neurons cultured with Aβ and 3.0 mM CaCl2 together. The latter effects corresponded to a 17% increase upon applying 50 mM KCl and 22% upon applying 10 mM caf feine solution, compared to those in the control cells group. Thus, under a rise in the extracellular calcium concentration, the intracellular Ca2+ concentration also increases, and its post-stimulation return to the basal level is slowed down. Considering that extracellular Ca2+ dysregulation can be readily involved in the AD pathogenesis, it is likely that the correction of this dysregulation may serve as a potential therapeutic approach for the prevention and/or treatment of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. N. Tyshchenko and E. A. Lukyanetz, “The role of beta-amyloid in the norm and at Alzheimer`s disease,” Fiziol. Zh., 66, No. 6, 88–96 (2020).

    Article  Google Scholar 

  2. B. Fadeel and S. Orrenius, “Apoptosis: a basic biological phenomenon with wide-ranging implications in human disease,” J. intern. Med., 258, No. 6, 479–517 (2005).

    Article  CAS  Google Scholar 

  3. P. Kostyuk, E. Lukyanetz, and Ya. Shuba, “Molecular physiology and pharmacology of the calcium channels,” Neurophysiology, 34, Nos. 2–3, 97–101 (2002).

    Article  CAS  Google Scholar 

  4. P. G. Kostyk, E. P. Kostyuk, and E. A. Lukyanetz, Intracellular Calcium Signaling – Structures and Functions, Naukova Dumka, Kyiv, 176 p. (2010).

  5. P. G. Kostyk, E. Kostyuk, E. A. Lukyanetz, Calcium Ions in Brain Function – From Physiology to Pathology, Naukova Dumka, Kyiv, 152 p. (2005).

  6. P. G. Kostyuk and E. A. Lukyanetz, “Intracellular calcium signaling – basic mechanisms and possible alterations,” in: Bioelectromagnetics: Current Concepts, S. N. Ayrapetyan, M. S. Markov (eds.), NATO Security through Science Series, Springer, The Netherlands, pp. 87–122 (2006).

  7. P. Goldstein and G. Kroemer, “Cell death by necrosis: towards a molecular definition,” Trends Biochem. Sci., 32, No. 1, 37–43 (2007).

    Article  Google Scholar 

  8. N. Festjens, T. Vanden Berghe, and P. Vandenabeele, “Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response,” Biochim. Biophys. Acta, 1757, Nos. 9–10, 1371–1387 (2006).

    Article  CAS  Google Scholar 

  9. W. Wu, P. Liu, and J. Li, “Necroptosis: an emerging form of programmed cell death,” Crit. Rev. Oncol. Hematol., 82, No. 3, 249–258 (2012).

    Article  Google Scholar 

  10. Z. S. Khachaturian, “Diagnosis of Alzheimer’s disease,” Arch. Neurol., 42, No. 11, 1097–1105 (1985).

    Article  CAS  Google Scholar 

  11. B. D. Arbo, J. B. Hoppe, K. Rodrigues, et al., “4’-Chlorodiazepam is neuroprotective against amyloid-beta in organotypic hippocampal cultures,” J. Steroid Biochem. Mol. Biol., 171, 281–287 (2017).

    Article  CAS  Google Scholar 

  12. M. Calvo-Rodriguez, E. Hernando-Perez, L. Nuñez, and C. Villalobos, “Amyloid β oligomers increase ER-mitochondria Ca2+ cross talk in young hippocampal neurons and exacerbate aging-induced intracellular Ca2+ remodeling,” Front. Cell. Neurosci., 13, 22 (2019).

    Article  CAS  Google Scholar 

  13. E. V. Kravenska, V. V. Chopovska, E. N. Yavorskaya, et al., “The role of mitochondria in the development of Alzheimer’s disease,” Tavrich. Med. Biol. Bull., 15, No. 3/2, 147–149 (2012).

    Google Scholar 

  14. E. V. Kravenska, V. V. Ganzha, E. N. Yavorskaya, and E. A. Lukyanetz, “Effect of cyclosporin A on the viability of hippocampal cells cultured under conditions of modeling of Alzheimer’s disease,” Neurophysiology, 48, No. 4, 246–251 (2016).

    Article  CAS  Google Scholar 

  15. S. Beesley, J. Olcese, C. Saunders, and E. A. Bienkiewicz, “Combinatorial treatment effects in a cell culture model of Alzheimer’s disease,” J. Alzheimers Dis., 55, No. 3, 1 155–1166 (2017).

  16. S. K. Dubey, M. S. Ram, K. V. Krishna, et al., “Recent expansions on cellular models to uncover the scientific barriers towards drug development for Alzheimer’s disease,” Cell. Mol. Neurobiol., 39, No. 2, 181–209 (2019).

    Article  CAS  Google Scholar 

  17. V. M. Shkryl, P. G. Kostyuk, and E. A. Lukyanetz, “Dual action of cytosolic calcium on calcium channel activity during hypoxia in hippocampal neurones,” Neuroreport, 12, No. 18, 4035–4039 (2001).

    Article  CAS  Google Scholar 

  18. V. M. Shkryl, L. M. Nikolaenko, P. G. Kostyuk, and E. A. Lukyanetz, “High-threshold calcium channel activity in rat hippocampal neurones during hypoxia,” Brain Res., 833, No. 2, 319–328 (1999).

    Article  CAS  Google Scholar 

  19. V. M. Shkryl, “Error correction due to background subtraction in ratiometric calcium measurements with CCD camera,” Heliyon, 6, No. 6, e04180 (2020).

    Article  Google Scholar 

  20. M. S. D’Arcy, “Cell death: a review of the major forms of apoptosis, necrosis and autophagy,” Cell Biol. Int., 43, No. 6, 582–592 (2019).

    Article  Google Scholar 

  21. E. Hooshmandi, M. Moosavi, H. Katinger, et al., “CEPO (carbamylated erythropoietin)-Fc protects hippocampal cells in culture against beta amyloid-induced apoptosis: considering Akt/GSK-3β and ERK signaling pathways,” Mol. Biol. Rep., 47, No. 3, 2097–2108 (2020).

    Article  CAS  Google Scholar 

  22. E. Hooshmandi, R. Ghasemi, P. Iloun, and M. Moosavi, “The neuroprotective effect of agmatine against amyl-oid β-induced apoptosis in primary cultured hippocampal cells involving ERK, Akt/GSK-3β, and TNF-α,” Mol. Biol. Rep., 46, No. 1, 489–496 (2019).

    Article  CAS  Google Scholar 

  23. Z. H. Ji, H. Zhao, C. Liu, and X.-Y. Yu, “In-vitro neuroprotective effect and mechanism of 2β-hydroxy-δ-cadinol against amyloid β-induced neuronal apoptosis,” Neuroreport, 31, No. 3, 245–250 (2020).

    Article  CAS  Google Scholar 

  24. T. Y. Korol and O. P. Kostyuk, “Damage of calciumcapturing function of mitochondria in experimental Alzheimer’s disease,” Rep. NAS Ukraine, No. 6, 186–190 (2009).

    Google Scholar 

  25. Y. Kravenska, H. Nieznanska, K. Nieznanski, et al., “The monomers, oligomers, and fibrils of amyloid-β inhibit the activity of mitoBKCa channels by a membranemediated mechanism,” Biochim. Biophys. Acta (BBA) Biomembranes, 1862, No. 9,183337 (2020).

    Article  CAS  Google Scholar 

  26. O. P. Kostiuk, T. Korol’, S. V. Korol’, et al., “Alteration of calcium signaling as one of the mechanisms of Alzheimer’s disease and diabetic polyneuropathy,” Fiziol. Zh., 56, No. 4, 130–138 (2010).

    Article  CAS  Google Scholar 

  27. M. Ramsden, Z. Henderson, and H. A. Pearson, “Modulation of Ca2+ channel currents in primary cultures of rat cortical neurones by amyloid beta protein (1-40) is dependent on solubility status,” Brain Res., 956, No. 2, 254–261 (2002).

    Article  CAS  Google Scholar 

  28. D. G. Cook, X. Li, S. D. Cherry, and A. R. Cantrell, “Presenilin 1 deficiency alters the activity of voltagegated Ca2+ channels in cultured cortical neurons,” J. Neurophysiol., 94, No. 6, 4421–4429 (2005).

    Article  CAS  Google Scholar 

  29. R. M. Davidson, L. Shajenko, and T. S. Donta, “Amyloid beta-peptide (Abeta P) potentiates a nimodipinesensitive L-type barium conductance in N1E-115 neuroblastoma cells,” Brain Res., 643, Nos. 1–2, 324–327 (1994).

    Article  CAS  Google Scholar 

  30. W. Y. Li, J. P. Butler, J. E. Hale, et al., “Suppression of an amyloid beta peptide-mediated calcium channel response by a secreted beta-amyloid precursor protein,” Neuroscience, 95, No. 1, 1–4 (2000).

    Article  CAS  Google Scholar 

  31. H. S. Chen and S. A. Lipton, “The chemical biology of clinically tolerated NMDA receptor antagonists,” J. Neurochem., 97, No. 6, 1611–1626 (2006).

    Article  CAS  Google Scholar 

  32. E. Scarpini, P. Scheltens, and H. Feldman, “Treatment of Alzheimer’s disease: current status and new perspectives,” Lancet Neurol., 2, No. 9, 539–547 (2003).

    Article  CAS  Google Scholar 

  33. R. F. Cowburn, B. Wiehager, and E. Sundström, “Betaamyloid peptides enhance binding of the calcium mobilising second messengers, inositol-(1,4,5) trisphosphate and inositol-(1,3,4,5)tetrakisphosphate to their receptor sites in rat cortical membranes,” Neurosci. Lett., 191, Nos. 1–2, 31–34 (1995).

    Article  CAS  Google Scholar 

  34. L. Galla, N. Redolfi, T. Pozzan, et al., “Intracellular calcium dysregulation by the Alzheimer’s disease-linked protein presenilin 2,” Int. J. Mol. Sci., 21, No. 3, 770 (2020).

    Article  CAS  Google Scholar 

  35. M. Kawahara and Y. Kuroda, “Molecular mechanism of neurodegeneration induced by Alzheimer’s beta-amyloid protein: channel formation and disruption of calcium homeostasis,” Brain Res. Bull., 53, No. 4, 389–397 (2000).

    Article  CAS  Google Scholar 

  36. J. I. Kourie, C. L. Henry, and P. Farrelly, “Diversity of amyloid beta protein fragment [1-40]-formed channels,” Cell. Mol. Neurobiol., 21, No. 3, 255–284 (2001).

    Article  CAS  Google Scholar 

  37. T. Iu. Korol’, O. P. Kostiuk, and P. H. Kostiuk, “Effect of beta-amyloid protein on calcium channels in plasma membranes of cultured hippocampal neurons,” Fiziol. Zh., 55, No. 4, 10–16 (2009).

    Article  Google Scholar 

  38. I. Žofková, “Hypercalcemia. Pathophysiological aspects,” Physiol. Res., 65, No. 1, 1–10 (2016).

    Article  Google Scholar 

  39. P. G. Kostyuk, E. A. Lukyanetz, and A. S. Ter-Markosyan, “Parathyroid hormone enhances calcium current in snail neurones - Simulation of the effect by phorbol esters,” Pflügers Arch., 420, No. 2,146–152 (1992).

    Article  CAS  Google Scholar 

  40. J. Zagzag, M. I. Hu, S. B. Fisher, and N. D. Perrier, “Hypercalcemia and cancer: Differential diagnosis and treatment,” CA Cancer J. Clin., 68, No. 5, 377–386 (2018).

    Article  Google Scholar 

  41. N. Arispe, E. Rojas, and H. B. Pollard, “Alzheimer disease amyloid beta protein forms calcium channels in bilayer membranes: blockade by tromethamine and aluminum,” Proc. Natl. Acad. Sci. U. S. A., 90, No. 2, 567–571 (1993).

    Article  CAS  Google Scholar 

  42. K. N. Green, “Calcium in the initiation, progression and as an effector of Alzheimer’s disease pathology,” J. Cell. Mol. Med., 13, No. 9A, 2787–2799 (2009).

    Article  CAS  Google Scholar 

  43. T. Y. Korol, S. V. Korol, E. P. Kostyuk, and P. G. Kostyuk, “β-amyloid-induced changes in calcium homeostasis in cultured hippocampal neurons of the rat,” Neurophysiology, 40, No. 1, 6–9 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Lukyanetz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rozumna, N.M., Shkryl, V.M., Ganzha, V.V. et al. Effects of Modeling of Hypercalcemia and β-Amyloid on Cultured Hippocampal Neurons of Rats. Neurophysiology 52, 348–357 (2020). https://doi.org/10.1007/s11062-021-09891-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-021-09891-8

Keywords

Navigation