Skip to main content
Log in

Tactile Learning within the Early Phase of Experimental Autoimmune Encephalomyelitis in Mice

  • Published:
Neurophysiology Aims and scope

The purpose of this study was to assess tactile learning in the early phase of experimental autoimmune encephalomyelitis (EAE), which was induced in C57BL/6 mice by subcutaneous injections on flank of myelin oligodendrocyte glycoprotein, MOG35-55 (250 μg per mouse). Tactile learning was assessed one week after EAE induction using the novel object recognition test (NORT) in a dark room. The procedure consisted of two phases. During the training phase (T1), the animals explored two similar objects; within the test phase (T2, occurring 4 h later) the mice explored one novel and one familiar object. On average, mice developed significant behavioral disabilities related to EAE 13.2 ± 1.9 days following immunization. In the EAE group, the locomotor activity level (assessed by measuring the distance travelled) in the T1 and T2 phases did not differ significantly, as compared to the related phases in the control group (P > 0.05). Within phase T1, no reliable differences between experimental groups were found for the frequency (number) of visits to the sample objects and for total exploration time. For phase T2, no difference was also found in the discrimination ratio when comparing the control group with the EAE group. Our study demonstrates that tactile learning in male mice may not be affected 7 days after immunization with MOG35-55 (i.e., within the early EAE phase).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. J. Jongen, A. T. Ter Horst, and A. M. Brands, “Cognitive impairment in multiple sclerosis,” Minerva Med., 103, No. 2, 73–96 (2012).

    PubMed  CAS  Google Scholar 

  2. M. L. B. Ferreira, “Cognitive deficits in multiple sclerosis: a systematic review,” Arq. Neuropsiquiatr., 68, No. 4, 632–641 (2010).

    Article  PubMed  Google Scholar 

  3. R. H. Benedict and R. Zivadinov, “Predicting neuropsychological abnormalities in multiple sclerosis,” J. Neurol. Sci., 245, Nos. 1/2, 67–72 (2006).

    Article  PubMed  Google Scholar 

  4. N. D. Chiaravalloti and J. DeLuca, “Cognitive impairment in multiple sclerosis,” Lancet Neurol., 7, No. 12, 1139–1151 (2008).

    Article  PubMed  Google Scholar 

  5. L. Steinman and S. S. Zamvil, “How to successfully apply animal studies in experimental allergic encephalomyelitis to research on multiple sclerosis,” Ann. Neurol., 60, No. 1, 12–21 (2006).

    Article  PubMed  CAS  Google Scholar 

  6. Y. Pollak, E. Orion, I. Goshen, et al., “Experimental autoimmune encephalomyelitis-associated behavioral syndrome as a model of depression due to multiple sclerosis,” Brain, Behav., Immun., 16, No. 5, 533–543 (2002).

    Article  CAS  Google Scholar 

  7. Y. Pollak, H. Ovadia, I. Goshen, et al., “Behavioral aspects of experimental autoimmune encephalomyelitis,” J. Neuroimmunol., 104, No. 1, 31–36 (2000).

    Article  PubMed  CAS  Google Scholar 

  8. J. Tu, C. Zhao, T. Vollmer, et al., “APOE 4 polymorphism results in early cognitive deficits in an EAE model,” Biochem. Biophys. Res. Commun., 384, No. 4, 466–470 (2009).

    Article  PubMed  CAS  Google Scholar 

  9. O. Costa, D. Divoux, A. Ischenko, et al., “Optimization of an animal model of experimental autoimmune encephalomyelitis achieved with a multiple MOG (35-55) peptide in C57BL6/J strain of mice,” J. Autoimmun., 20, No. 1, 51–61 (2003).

    Article  PubMed  CAS  Google Scholar 

  10. M. Onuki, M. M. Ayers, C. C. Bernard, and J. M. Orian, “Axonal degeneration is an early pathological feature in autoimmune-mediated demyelination in mice,” Microsc. Res. Tech., 52, No. 6, 731–739 (2001).

    Article  PubMed  CAS  Google Scholar 

  11. A. Ennaceur and J. Delacour, “A new one-trial test for neurobiological studies of memory in rats. 1: Behavioral data,” Behav. Brain Res., 31, No. 1, 47–59 (1988).

    Article  PubMed  CAS  Google Scholar 

  12. B. Roozendaal, S. Okuda, E. A. Van der Zee, and J. L. McGaugh, “Glucocorticoid enhancement of memory requires arousal-induced noradrenergic activation in the basolateral amygdala,” Proc. Natl. Acad. Sci. USA, 103, No. 17, 6741–6746 (2006).

    Article  PubMed  CAS  Google Scholar 

  13. B. Aisa, R. Tordera, B. Lasheras, et al., “Cognitive impairment associated to HPA axis hyperactivity after maternal separation in rats,” Psychoneuroendocrinology, 32, No. 3, 256–266 (2007).

    Article  PubMed  CAS  Google Scholar 

  14. D. M. Arduino, A. R. Esteves, D. F. Silva, et al., “Therapeutic intervention at cellular quality control systems in Alzheimer’s and Parkinson’s diseases,” Curr. Pharm. Des., 17, No. 31, 3446–3459 (2011).

    Article  PubMed  CAS  Google Scholar 

  15. A. Winkelmann, C. Engel, A. Apel, and U. K. Zettl, “Cognitive impairment in multiple sclerosis,” J. Neurol., 254, Suppl. 2, 1135–1142 (2007).

    Google Scholar 

  16. D. A. Brown and P. E. Sawchenko, “Time course and distribution of inflammatory and neurodegenerative events suggest structural bases for the pathogenesis of experimental autoimmune encephalomyelitis,” J. Comp. Neurol., 502, No. 2, 236–260 (2007).

    Article  PubMed  Google Scholar 

  17. D. H. Rodrigues, M. C. Vilela, L. S. Barcelos, et al., “Absence of PI3Kг leads to increased leukocyte apoptosis and diminished severity of experimental autoimmune encephalomyelitis,” J. Neuroimmunol., 222, No. 1, 90–94 (2010).

    Article  PubMed  CAS  Google Scholar 

  18. D. H. Rodrigues, N. Lacerda-Queiroz, A. S. de Miranda, et al., “Absence of PAF receptor alters cellular infiltrate but not rolling and adhesion of leukocytes in experimental autoimmune encephalomyelitis,” Brain Res., 1385, 298–306 (2011).

    Article  PubMed  CAS  Google Scholar 

  19. M. O. Ziehn, A. A. Avedisian, S. Tiwari-Woodruff, and R. R. Voskuhl, “Hippocampal CA1 atrophy and synaptic loss during experimental autoimmune encephalomyelitis, EAE,” Lab. Invest., 90, No. 5, 774–786 (2010).

    Article  PubMed  Google Scholar 

  20. D. H. Rodrigues, M. C. Vilela, N. Lacerda-Queiroz, et al., “Behavioral investigation of mice with experimental autoimmune encephalomyelitis,” Arq. Neuropsiquiat., 69, No. 6, 938–942 (2011).

    Article  PubMed  Google Scholar 

  21. M. Jones, T. Nguyen, C. Deboy, et al., “Behavioral and pathological outcomes in MOG 35–55 experimental autoimmune encephalomyelitis,” J. Neuroimmunol., 199, No. 1, 83–93 (2008).

    Article  PubMed  CAS  Google Scholar 

  22. F. H. Peng, X. F. Zhong, X. Q. Hu, et al., “Effects of dendritic cell and subgroup changes on bone marrow transplantation treatment of multiple sclerosis,” Neural Regener. Res., 4, No. 11, 874–878 (2009).

    Google Scholar 

  23. N. Popovic, A. Schubart, B. D. Goetz, et al., “Inhibition of autoimmune encephalomyelitis by a tetracycline,” Ann. Neurol., 51, No. 2, 215–223 (2002).

    Article  PubMed  CAS  Google Scholar 

  24. E. Nizri, M. Irony-Tur-Sinai, N. Faranesh, et al., “Suppression of neuroinflammation and immunomodulation by the acetylcholinesterase inhibitor rivastigmine,” J. Neuroimmunol., 203, No. 1, 12–22 (2008).

    Article  PubMed  CAS  Google Scholar 

  25. I. Peruga, S. Hartwig, J. Thöne, et al., “Inflammation modulates anxiety in an animal model of multiple sclerosis,” Behav. Brain Res., 220, No. 1, 20–29 (2011).

    Article  PubMed  Google Scholar 

  26. E. D. Olfert, B. M. Cross, and A. A. McWilliam, Guide to the Care and Use of Experimental Animals, Canadian Council on Animal Care Ottawa, Ontario, Canada (1993).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Shamsizadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ayoobi, F., Fatemi, I., Roohbakhsh, A. et al. Tactile Learning within the Early Phase of Experimental Autoimmune Encephalomyelitis in Mice. Neurophysiology 45, 306–311 (2013). https://doi.org/10.1007/s11062-013-9373-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-013-9373-6

Keywords

Navigation