Skip to main content
Log in

Processes of Proliferation and Apoptosis in the Brain of the Amur Sturgeon

  • Published:
Neurophysiology Aims and scope

Using techniques of immunoperoxidase staining of proliferating cell nuclear antigen (PCNA) and TUNEL labeling of fragmented DNA, we studied sites of proliferation and apoptosis in the myelencephalon, cerebellum, tectum opticum, thalamus, and hypothalamus of the Amur sturgeon (Acipenser schrenckii). We found that the processes of proliferation and apoptosis are maintained in the brain of 3-year-old sturgeon individuals; the ratio of these processes in different cerebral regions varied significantly. The maximum intensity of proliferative activity was found in the periventricular zone of the myelencephalon (proliferation index, on average, 21.0 ± 1.3%). This fact allows us to consider this cerebral region a most important zone were adult neurogenesis occurs in the sturgeon. In the medial reticular formation, dorsal thalamic nuclei, inner fibrous layer of the tectum, and lateral hypothalamus, the maximum numbers of apoptotic elements were found. Therefore, these zones in the brain of the sturgeon correspond, apparently, to the regions where postmitotic neuroblasts are localized. In sensory centers (tectum and nuclei of the V, VII, and X nerves), significantly varying ratios of intensities of proliferation and apoptosis were found; this is indicative of dissimilar rates of growth and differentiation in visual and chemosensory centers of the sturgeon brain. The high proliferative activity in sensory and motor cerebral centers of the sturgeon allows us to hypothesize that a neotenic pattern is preserved in these CNS regions of adult sturgeons over a long period after the embryogenesis has been completed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. K. H. Zupanc, K. Hinsch, and F.H. Gagr, “Proliferation, migration, neuronal differentiation and long-term survival of new cells in the adult zebrafish brain,” J. Comp. Neurol., 488, 290–319 (2005).

    Article  PubMed  Google Scholar 

  2. H. Grandel, J. Kaslin, J. Ganz, et al., “Neural stem cells and neurogenesis in the adult zebrafish brain: origin, proliferation dynamics, migration and cell fate,” Dev. Biol. 295, 263–277 (2006).

    Article  PubMed  CAS  Google Scholar 

  3. J. Soutschek and G. K. H. Zupanc, “Apoptosis in the cerebellum of adult teleost fish, Apteronotus leptorhynchus,” Dev. Brain Res., 97, 279–286 (1996).

    Article  CAS  Google Scholar 

  4. К. Ampatzis and C. Dermon, “Sex differences in adult cell proliferation within the zebrafish (Danio rerio) cerebellum,” Eur. J. Neurosci., 25, 1030–1040 (2007).

    Article  PubMed  Google Scholar 

  5. E. N. Artyukhin, Sturgeonse (Ecology, Areal, and Phylogenesis) [in Russian], Publishing House of St. Petersburg University, St. Petersburg (2008).

    Google Scholar 

  6. G. A. Merkulov, Course of Pathological/Histological Technique [in Russian], Meditsina, Leningrad (1969).

    Google Scholar 

  7. G. K. H. Zupank, “Towards brain repair: Insights from teleost fish,” Seminars Cell Dev. Biol., 20, 683–690 (2009).

    Article  Google Scholar 

  8. E. V. Pushchina, M. Yu. Fleishman, and S. S. Timoshin, “Proliferative zones in the brain of the Amur sturgeon fry. Interaction with neuromeres and migration of secondary matrix zones,” Russ. J. Dev. Biol., 38, 286–293 (2007).

    Article  Google Scholar 

  9. G. K. H. Zupank, “Neurogenesis, cell death and regeneration in the adult gymnotiform brain,” J. Exp. Biol., 202, 1435–1446 (1999).

    Google Scholar 

  10. P. Ekström, C. Johnson, and L. Ohlin, “Ventricular proliferation zones in the brain of an adult teleost fish and their relation to neuromeres and migration (secondary matrix) zones,” J. Comp. Neurol., 436, 92–100 (2001).

    Article  PubMed  Google Scholar 

  11. R. S. Rajendran, U. M. Wellbrock, and G. K. H. Zupanc, “Apoptotic cell death, long-term persistence, and neuronal differentiation of aneuploid cells generated in the adult brain of teleost fish,” Dev. Neurobiol., 68, 1257–1268 (2008).

    Article  PubMed  Google Scholar 

  12. R. S. Rajendran, M. M. Zupanc, A. Lösche, et al., “Numerical chromosome variation and mitotic segregation defect in the adult brain of teleost fish,” Dev. Neurobiol., 67, 1334–1347 (2007).

    Article  PubMed  Google Scholar 

  13. S. K. Rehen, M. J. McConnell, D. Kaushal, et al., “Chromosomal variation in neurons of the developing and adult mammalian nervous system,” Proc. Natl. Acad. Sci. USA, 98, 13361–13366 (2001).

    Article  PubMed  CAS  Google Scholar 

  14. M. Wullimann and L. Puelles, “Postembryonic neural proliferation in the zebrafish forebrain and its relationship to prosomeric domains,” Anat. Embryol., 329, 329–348 (1999).

    Article  Google Scholar 

  15. R. Bravo and H. MacDonald-Bravo, “Existence of two populations of cyclin/proliferating cell nuclear a ntigen during the cell cycle: association with DNA replication sites,” J. Cell Biol., 105, 1549–1554 (1987).

    Article  PubMed  CAS  Google Scholar 

  16. E. Candal, R. Anadon, W. DeGrip, and I. Rodríguez-Moldes, “Patterns of cell proliferation and cell death in the developing retina and optic tectum of brown trout,” Dev. Brain Res., 154, 101–119 (2005).

    Article  CAS  Google Scholar 

  17. G. K. H. Zupanc and I. Horschke, “Proliferation zones in the brain of adult gymnotiform fish: a quantitative mapping study,” J. Comp. Neurol., 353, 213–233 (1995).

    Article  PubMed  CAS  Google Scholar 

  18. R. Brandstätter and K. Kotrschal, “Brain growth patterns in four European cyprinid fish species (Cyprinidae, Teleostei): roach (Rutilus rutilus), bream (Abramis brama), common carp (Cyprinus carpio) and sabre carp (Pelecus cultratus),” Brain, Behav., Evolut., 35, 195–211 (1990).

    Article  Google Scholar 

  19. R. C. Marcus, C. L. Delaney, and S. S. Easter, “Neurogenesis in the visual system of embryonic and adult zebrafish (Danio rerio),” Vis. Neurosci., 16, 417–424 (1999).

    Article  PubMed  CAS  Google Scholar 

  20. R. Kubota, J. N. Hokoc, A. Moshiri, et al., “A comparative study of neurogenesis in the retinal ciliary marginal zone of homeothermic vertebrates,” Brain Res. Dev. Brain Res., 134, 31–41 (2002).

    Article  PubMed  CAS  Google Scholar 

  21. P. Rakic, “Neuroscience: immigration denied,” Nature, 427, 685–686 (2004).

    Article  PubMed  CAS  Google Scholar 

  22. H. Song, G. Kempermann, L. Overstreet Wadiche, et al., “New neurons in the adult mammalian brain: synaptogenesis and functional integration,” J. Neurosci., 25, 10366–10368 (2005).

    Article  PubMed  CAS  Google Scholar 

  23. P. M. Lledo, M. Alonso, and M. S. Grubb, “Adult neurogenesis and functional plasticity in neuronal circuits,” Nat. Rev. Neurosci., 7, 179–193 (2006).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Puschina.

Additional information

Neirofiziologiya/Neurophysiology, Vol. 43, No. 4, pp. 315–331, July–August, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puschina, E.V., Obukhov, D.K. Processes of Proliferation and Apoptosis in the Brain of the Amur Sturgeon. Neurophysiology 43, 271–286 (2011). https://doi.org/10.1007/s11062-011-9227-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-011-9227-z

Keywords

Navigation