Skip to main content

Advertisement

Log in

Radiation myelopathy following stereotactic body radiation therapy for spine metastases

  • Case Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Purpose

Stereotactic body radiation therapy (SBRT) is now considered a standard of care treatment option in the management of spine metastases. One of the most feared complications of spine SBRT is radiation myelopathy (RM).

Methods

We provided a narrative review of RM following spine SBRT based on review of the published literature, including data on spinal cord dose constraints associated with the risk of RM, strategies to mitigate the risk, and management options for RM.

Results

There are limited published data of cases of RM following spine SBRT with detailed spinal cord dosimetry. The HyTEC report provided recommendations for the point maximal dose (Dmax) for the spinal cord that is associated with a < 5% risk of RM for 1–5 fractions spine SBRT. In the setting of spine SBRT reirradiation after previous conventional external beam radiation therapy (cEBRT), factors associated with RM are: SBRT spinal cord Dmax, cumulative spinal cord Dmax, and the time interval between previous RT and SBRT reirradiation. There are various strategies to mitigate the risk of RM, including accurate delineation of the spinal cord (or thecal sac), strict adherence to the recommended spinal cord dose constraints, and robust treatment immobilisation set-up and delivery. Limited effective treatment options are available for patients who develop RM, and these include corticosteroids, hyperbaric oxygen, and bevacizumab; however, none have been supported by high quality evidence.

Conclusion

RM is a rare but devastating complication following SBRT for spine metastases. There are strategies to minimise the risk of RM to ensure safe delivery of spine SBRT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Vellayappan BA, Chao ST, Foote M, Guckenberger M, Redmond KJ, Chang EL et al (2018) The evolution and rise of stereotactic body radiotherapy (SBRT) for spinal metastases. Expert Rev Anticancer Ther 18(9):887–900

    Article  CAS  PubMed  Google Scholar 

  2. Glicksman RM, Tjong MC, Neves-Junior WFP, Spratt DE, Chua KLM, Mansouri A et al (2020) Stereotactic Ablative Radiotherapy for the Management of Spinal Metastases: A Review. JAMA Oncol 6(4):567–577

    Article  PubMed  Google Scholar 

  3. Sahgal A, Myrehaug SD, Siva S, Masucci GL, Maralani PJ, Brundage M et al (2021) Stereotactic body radiotherapy versus conventional external beam radiotherapy in patients with painful spinal metastases: an open-label, multicentre, randomised, controlled, phase 2/3 trial. Lancet Oncol. https://doi.org/10.1016/S1470-2045(21)00196-0

    Article  PubMed  Google Scholar 

  4. Chang JH, Gandhidasan S, Finnigan R, Whalley D, Nair R, Herschtal A et al (2017) Stereotactic ablative body radiotherapy for the treatment of spinal oligometastases. Clin Oncol (R Coll Radiol) 29(7):e119–e125

    Article  CAS  Google Scholar 

  5. Palma DA, Olson R, Harrow S, Gaede S, Louie AV, Haasbeek C et al (2019) Stereotactic ablative radiotherapy versus standard of care palliative treatment in patients with oligometastatic cancers (SABR-COMET): a randomised, phase 2, open-label trial. Lancet 393(10185):2051–2058

    Article  PubMed  Google Scholar 

  6. Cao Y, Chen H, Sahgal A, Erler D, Badellino S, Biswas T et al (2021) An international pooled analysis of SBRT outcomes to oligometastatic spine and non-spine bone metastases. Radiother Oncol 164:98–103

    Article  PubMed  Google Scholar 

  7. Zeng KL, Sahgal A, Husain ZA, Myrehaug S, Tseng CL, Detsky J et al (2021) Local control and patterns of failure for “Radioresistant” spinal metastases following stereotactic body radiotherapy compared to a “Radiosensitive” reference. J Neurooncol 152(1):173–182

    Article  PubMed  Google Scholar 

  8. Hall WA, Stapleford LJ, Hadjipanayis CG, Curran WJ, Crocker I, Shu HK (2011) Stereotactic body radiosurgery for spinal metastatic disease: an evidence-based review. Int J Surg Oncol 2011:979214

    PubMed  PubMed Central  Google Scholar 

  9. Myrehaug S, Sahgal A, Hayashi M, Levivier M, Ma L, Martinez R et al (2017) Reirradiation spine stereotactic body radiation therapy for spinal metastases: systematic review. J Neurosurg Spine 27(4):428–435

    Article  PubMed  Google Scholar 

  10. Wong CS, Van Dyk J, Milosevic M, Laperriere NJ (1994) Radiation myelopathy following single courses of radiotherapy and retreatment. Int J Radiat Oncol Biol Phys 30(3):575–581

    Article  CAS  PubMed  Google Scholar 

  11. Wong CS, Fehlings MG, Sahgal A (2015) Pathobiology of radiation myelopathy and strategies to mitigate injury. Spinal Cord 53(8):574–580

    Article  CAS  PubMed  Google Scholar 

  12. Abbatucci JS, Delozier T, Quint R, Roussel A, Brune D (1978) Radiation myelopathy of the cervical spinal cord: time, dose and volume factors. Int J Radiat Oncol Biol Phys 4(3–4):239–248

    Article  CAS  PubMed  Google Scholar 

  13. Schultheiss TE (2008) The radiation dose-response of the human spinal cord. Int J Radiat Oncol Biol Phys 71(5):1455–1459

    Article  PubMed  Google Scholar 

  14. Nieder C, Grosu AL, Andratschke NH, Molls M (2006) Update of human spinal cord reirradiation tolerance based on additional data from 38 patients. Int J Radiat Oncol Biol Phys 66(5):1446–1449

    Article  PubMed  Google Scholar 

  15. Nieder C, Grosu AL, Andratschke NH, Molls M (2005) Proposal of human spinal cord reirradiation dose based on collection of data from 40 patients. Int J Radiat Oncol Biol Phys 61(3):851–855

    Article  PubMed  Google Scholar 

  16. Kirkpatrick JP, Meyer JJ, Marks LB (2008) The linear-quadratic model is inappropriate to model high dose per fraction effects in radiosurgery. Semin Radiat Oncol 18(4):240–243

    Article  PubMed  Google Scholar 

  17. Brenner DJ (2008) The linear-quadratic model is an appropriate methodology for determining isoeffective doses at large doses per fraction. Semin Radiat Oncol 18(4):234–239

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sahgal A, Weinberg V, Ma L, Chang E, Chao S, Muacevic A et al (2013) Probabilities of radiation myelopathy specific to stereotactic body radiation therapy to guide safe practice. Int J Radiat Oncol Biol Phys 85(2):341–347

    Article  PubMed  Google Scholar 

  19. Daly ME, Choi CY, Gibbs IC, Adler JR Jr, Chang SD, Lieberson RE et al (2011) Tolerance of the spinal cord to stereotactic radiosurgery: insights from hemangioblastomas. Int J Radiat Oncol Biol Phys 80(1):213–220

    Article  PubMed  Google Scholar 

  20. Katsoulakis E, Jackson A, Cox B, Lovelock M, Yamada Y (2017) A detailed dosimetric analysis of spinal cord tolerance in high-dose spine radiosurgery. Int J Radiat Oncol Biol Phys 99(3):598–607

    Article  PubMed  Google Scholar 

  21. Ghia AJ, Guha-Thakurta N, Hess K, Yang JN, Settle SH, Sharpe HJ et al (2018) Phase 1 study of spinal cord constraint relaxation with single session spine stereotactic radiosurgery in the primary management of patients with inoperable, previously unirradiated metastatic epidural spinal cord compression. Int J Radiat Oncol Biol Phys 102(5):1481–1488

    Article  PubMed  Google Scholar 

  22. Dunne EM, Lo SS, Liu MC, Bergman A, Kosztyla R, Chang EL et al (2022) Thecal Sac Contouring as a Surrogate for the Cauda Equina and Intracanal Spinal Nerve Roots for Spine Stereotactic Body Radiation Therapy (SBRT): Contour Variability and Recommendations for Safe Practice. Int J Radiat Oncol Biol Phys 112(1):114–120

    Article  PubMed  Google Scholar 

  23. Detsky JS, Nguyen TK, Lee Y, Atenafu E, Maralani P, Husain Z et al (2020) Mature imaging-based outcomes supporting local control for complex reirradiation salvage spine stereotactic body radiotherapy. Neurosurgery 87(4):816–822

    Article  PubMed  Google Scholar 

  24. Tseng CL, Soliman H, Myrehaug S, Lee YK, Ruschin M, Atenafu EG et al (2018) Imaging-based outcomes for 24 Gy in 2 daily fractions for patients with de novo spinal metastases treated with spine stereotactic body radiation therapy (SBRT). Int J Radiat Oncol Biol Phys 102(3):499–507

    Article  PubMed  Google Scholar 

  25. Thibault I, Campbell M, Tseng CL, Atenafu EG, Letourneau D, Yu E et al (2015) Salvage stereotactic body radiotherapy (SBRT) following in-field failure of initial SBRT for spinal metastases. Int J Radiat Oncol Biol Phys 93(2):353–360

    Article  PubMed  Google Scholar 

  26. Sahgal A, Ma L, Weinberg V, Gibbs IC, Chao S, Chang UK et al (2012) Reirradiation human spinal cord tolerance for stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys 82(1):107–116

    Article  PubMed  Google Scholar 

  27. Ito K, Ogawa H, Nakajima Y (2021) Efficacy and toxicity of re-irradiation spine stereotactic body radiotherapy with respect to irradiation dose history. Jpn J Clin Oncol 51(2):264–270

    Article  PubMed  Google Scholar 

  28. Hashmi A, Guckenberger M, Kersh R, Gerszten PC, Mantel F, Grills IS et al (2016) Re-irradiation stereotactic body radiotherapy for spinal metastases: a multi-institutional outcome analysis. J Neurosurg Spine 25(5):646–653

    Article  PubMed  Google Scholar 

  29. Chang UK, Cho WI, Kim MS, Cho CK, Lee DH, Rhee CH (2012) Local tumor control after retreatment of spinal metastasis using stereotactic body radiotherapy; comparison with initial treatment group. Acta Oncol 51(5):589–595

    Article  PubMed  Google Scholar 

  30. Ghia AJ, Guha-Thakurta N, Song J, Thall P, Briere TM, Settle SH et al (2021) Phase 1 study of spinal cord constraint relaxation with single session spine stereotactic radiosurgery in the primary management of patients with inoperable, previously irradiated metastatic epidural spinal cord compression. N Am Spine Soc J 6:100066

    PubMed  PubMed Central  Google Scholar 

  31. Sahgal A, Chang JH, Ma L, Marks LB, Milano MT, Medin P et al (2021) Spinal cord dose tolerance to stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys 110(1):124–136

    Article  PubMed  Google Scholar 

  32. Gerszten PC, Chen S, Quader M, Xu Y, Novotny J Jr, Flickinger JC (2012) Radiosurgery for benign tumors of the spine using the Synergy S with cone-beam computed tomography image guidance. J Neurosurg 117(Suppl):197–202

    Article  PubMed  Google Scholar 

  33. Sahgal A, Chou D, Ames C, Ma L, Lamborn K, Huang K et al (2007) Image-guided robotic stereotactic body radiotherapy for benign spinal tumors: theUniversity of California San Francisco preliminary experience. Technol Cancer Res Treat 6(6):595–604

    Article  CAS  PubMed  Google Scholar 

  34. Sahgal A, Ames C, Chou D, Ma L, Huang K, Xu W et al (2009) Stereotactic body radiotherapy is effective salvage therapy for patients with prior radiation of spinal metastases. Int J Radiat Oncol Biol Phys 74(3):723–731

    Article  PubMed  Google Scholar 

  35. Thibault I, Chang EL, Sheehan J, Ahluwalia MS, Guckenberger M, Sohn MJ et al (2015) Response assessment after stereotactic body radiotherapy for spinal metastasis: a report from the SPIne response assessment in Neuro-Oncology (SPINO) group. Lancet Oncol 16(16):e595-603

    Article  PubMed  Google Scholar 

  36. Cox BW, Spratt DE, Lovelock M, Bilsky MH, Lis E, Ryu S et al (2012) International Spine Radiosurgery Consortium consensus guidelines for target volume definition in spinal stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 83(5):e597-605

    Article  PubMed  Google Scholar 

  37. Redmond KJ, Lo SS, Soltys SG, Yamada Y, Barani IJ, Brown PD et al (2017) Consensus guidelines for postoperative stereotactic body radiation therapy for spinal metastases: results of an international survey. J Neurosurg Spine 26(3):299–306

    Article  PubMed  Google Scholar 

  38. Thariat J, Castelli J, Chanalet S, Marcie S, Mammar H, Bondiau PY (2009) CyberKnife stereotactic radiotherapy for spinal tumors: value of computed tomographic myelography in spinal cord delineation. Neurosurgery 64(2 Suppl):A60–A66

    Article  PubMed  Google Scholar 

  39. Oztek MA, Mayr NA, Mossa-Basha M, Nyflot M, Sponseller PA, Wu W et al (2020) The dancing cord: inherent spinal cord motion and its effect on cord dose in spine stereotactic body radiation therapy. Neurosurgery 87(6):1157–1166

    Article  PubMed  PubMed Central  Google Scholar 

  40. Tseng CL, Sussman MS, Atenafu EG, Letourneau D, Ma L, Soliman H et al (2015) Magnetic resonance imaging assessment of spinal cord and cauda equina motion in supine patients with spinal metastases planned for spine stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys 91(5):995–1002

    Article  PubMed  Google Scholar 

  41. Cai J, Sheng K, Sheehan JP, Benedict SH, Larner JM, Read PW (2007) Evaluation of thoracic spinal cord motion using dynamic MRI. Radiother Oncol 84(3):279–282

    Article  PubMed  Google Scholar 

  42. Hyde D, Lochray F, Korol R, Davidson M, Wong CS, Ma L et al (2012) Spine stereotactic body radiotherapy utilizing cone-beam CT image-guidance with a robotic couch: intrafraction motion analysis accounting for all six degrees of freedom. Int J Radiat Oncol Biol Phys 82(3):e555–e562

    Article  PubMed  Google Scholar 

  43. Chang JH, Shin JH, Yamada YJ, Mesfin A, Fehlings MG, Rhines LD, et al. Stereotactic Body Radiotherapy for Spinal Metastases: What are the Risks and How Do We Minimize Them? Spine (Phila Pa 1976). 2016;41 Suppl 20:S238-S45.

  44. Chan MW, Thibault I, Atenafu EG, Yu E, John Cho BC, Letourneau D et al (2016) Patterns of epidural progression following postoperative spine stereotactic body radiotherapy: implications for clinical target volume delineation. J Neurosurg Spine 24(4):652–659

    Article  PubMed  Google Scholar 

  45. Shiu AS, Chang EL, Ye JS, Lii M, Rhines LD, Mendel E et al (2003) Near simultaneous computed tomography image-guided stereotactic spinal radiotherapy: an emerging paradigm for achieving true stereotaxy. Int J Radiat Oncol Biol Phys 57(3):605–613

    Article  PubMed  Google Scholar 

  46. Li W, Sahgal A, Foote M, Millar BA, Jaffray DA, Letourneau D (2012) Impact of immobilization on intrafraction motion for spine stereotactic body radiotherapy using cone beam computed tomography. Int J Radiat Oncol Biol Phys 84(2):520–526

    Article  PubMed  Google Scholar 

  47. Ma L, Sahgal A, Hossain S, Chuang C, Descovich M, Huang K et al (2009) Nonrandom intrafraction target motions and general strategy for correction of spine stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys 75(4):1261–1265

    Article  PubMed  Google Scholar 

  48. Laufer I, Iorgulescu JB, Chapman T, Lis E, Shi W, Zhang Z et al (2013) Local disease control for spinal metastases following “separation surgery” and adjuvant hypofractionated or high-dose single-fraction stereotactic radiosurgery: outcome analysis in 186 patients. J Neurosurg Spine 18(3):207–214

    Article  PubMed  PubMed Central  Google Scholar 

  49. Di Perna G, Cofano F, Mantovani C, Badellino S, Marengo N, Ajello M et al (2020) Separation surgery for metastatic epidural spinal cord compression: a qualitative review. J Bone Oncol 25:100320

    Article  PubMed  PubMed Central  Google Scholar 

  50. Jakubovic R, Ruschin M, Tseng CL, Pejovic-Milic A, Sahgal A, Yang VXD (2019) Surgical resection with radiation treatment planning of spinal tumors. Neurosurgery 84(6):1242–1250

    Article  PubMed  Google Scholar 

  51. Furuya T, Lee YK, Archibald-Heeren BR, Byrne M, Bosco B, Phua JH et al (2020) Evaluation of multi-institutional end-to-end testing for post-operative spine stereotactic body radiation therapy. Phys Imaging Radiat Oncol 16:61–68

    Article  PubMed  PubMed Central  Google Scholar 

  52. Radzi S, Cowin G, Robinson M, Pratap J, Volp A, Schuetz MA et al (2014) Metal artifacts from titanium and steel screws in CT, 1.5T and 3T MR images of the tibial Pilon: a quantitative assessment in 3D. Quant Imaging Med Surg. 4(3):163–72

    PubMed  PubMed Central  Google Scholar 

  53. Fleege C, Makowski M, Rauschmann M, Fraunhoffer KL, Fennema P, Arabmotlagh M et al (2020) Carbon fiber-reinforced pedicle screws reduce artifacts in magnetic resonance imaging of patients with lumbar spondylodesis. Sci Rep 10(1):16094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Al-Omair A, Masucci L, Masson-Cote L, Campbell M, Atenafu EG, Parent A et al (2013) Surgical resection of epidural disease improves local control following postoperative spine stereotactic body radiotherapy. Neuro-Oncology 15(10):1413–1419

    Article  PubMed  PubMed Central  Google Scholar 

  55. Alghamdi M, Sahgal A, Soliman H, Myrehaug S, Yang VXD, Das S et al (2019) Postoperative stereotactic body radiotherapy for spinal metastases and the impact of epidural disease grade. Neurosurgery 85(6):E1111–E1118

    Article  PubMed  Google Scholar 

  56. Miller JA, Balagamwala EH, Angelov L, Suh JH, Rini B, Garcia JA et al (2016) Spine stereotactic radiosurgery with concurrent tyrosine kinase inhibitors for metastatic renal cell carcinoma. J Neurosurg Spine 25(6):766–774

    Article  PubMed  Google Scholar 

  57. Staehler M, Haseke N, Nuhn P, Tullmann C, Karl A, Siebels M et al (2011) Simultaneous anti-angiogenic therapy and single-fraction radiosurgery in clinically relevant metastases from renal cell carcinoma. BJU Int 108(5):673–678

    PubMed  Google Scholar 

  58. Stefan D, Popotte H, Stefan AR, Tesniere A, Tomaszewski A, Lesueur P et al (2016) Vemurafenib and concomitant stereotactic radiation for the treatment of melanoma with spinal metastases: a case report. Rep Pract Oncol Radiother 21(1):76–80

    Article  PubMed  Google Scholar 

  59. Williamson R, Kondziolka D, Kanaan H, Lunsford LD, Flickinger JC (2008) Adverse radiation effects after radiosurgery may benefit from oral vitamin E and pentoxifylline therapy: a pilot study. Stereotact Funct Neurosurg 86(6):359–366

    Article  PubMed  Google Scholar 

  60. Glantz MJ, Burger PC, Friedman AH, Radtke RA, Massey EW, Schold SC Jr (1994) Treatment of radiation-induced nervous system injury with heparin and warfarin. Neurology 44(11):2020–2027

    Article  CAS  PubMed  Google Scholar 

  61. Chung C, Bryant A, Brown PD (2018) Interventions for the treatment of brain radionecrosis after radiotherapy or radiosurgery. Cochrane Database Syst Rev. 7:CD011492

    PubMed  Google Scholar 

  62. Smith JA, Fenderson JL (2020) Diving into radiation necrosis: hyperbaric oxygen therapy in cerebral radiation necrosis. JCO Oncol Pract 16(8):519–521

    Article  PubMed  Google Scholar 

  63. Calabro F, Jinkins JR (2000) MRI of radiation myelitis: a report of a case treated with hyperbaric oxygen. Eur Radiol 10(7):1079–1084

    Article  CAS  PubMed  Google Scholar 

  64. Luk KH, Baker DG, Fellows CF (1978) Hyperbaric oxygen after radiation and its effect on the production of radiation myelitis. Int J Radiat Oncol Biol Phys 4(5–6):457–459

    Article  CAS  PubMed  Google Scholar 

  65. Nordal RA, Nagy A, Pintilie M, Wong CS (2004) Hypoxia and hypoxia-inducible factor-1 target genes in central nervous system radiation injury: a role for vascular endothelial growth factor. Clin Cancer Res 10(10):3342–3353

    Article  CAS  PubMed  Google Scholar 

  66. Levin VA, Bidaut L, Hou P, Kumar AJ, Wefel JS, Bekele BN et al (2011) Randomized double-blind placebo-controlled trial of bevacizumab therapy for radiation necrosis of the central nervous system. Int J Radiat Oncol Biol Phys 79(5):1487–1495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Xu Y, Rong X, Hu W, Huang X, Li Y, Zheng D et al (2018) Bevacizumab monotherapy reduces radiation-induced brain necrosis in nasopharyngeal carcinoma patients: a randomized controlled trial. Int J Radiat Oncol Biol Phys 101(5):1087–1095

    Article  CAS  PubMed  Google Scholar 

  68. Shah N, Ranjan S (2022) Successful treatment of quadriparesis from radiation myelopathy with bevacizumab in a patient with metastatic breast cancer. BMJ Case Rep. 15(2):e246470

    Article  PubMed  Google Scholar 

  69. Chamberlain MC, Eaton KD, Fink J (2011) Radiation-induced myelopathy: treatment with bevacizumab. Arch Neurol 68(12):1608–1609

    Article  PubMed  Google Scholar 

  70. Canedo G, Solis I, Gonzalez-San Segundo C, Madero L, Lassaletta A (2020) Treatment of radiation-induced myelopathy with bevacizumab. Clin Transl Oncol 22(6):957–960

    Article  CAS  PubMed  Google Scholar 

  71. Psimaras D, Tafani C, Ducray F, Leclercq D, Feuvret L, Delattre JY et al (2016) Bevacizumab in late-onset radiation-induced myelopathy. Neurology 86(5):454–457

    Article  CAS  PubMed  Google Scholar 

  72. Cai J, Zheng J, Shen J, Yuan Z, Xie M, Gao M et al (2020) A radiomics model for predicting the response to Bevacizumab in brain necrosis after radiotherapy. Clin Cancer Res 26(20):5438–5447

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

No funding was used to perform this work.

Author information

Authors and Affiliations

Authors

Contributions

WLO and AS contributed to literature review and wrote the first draft. All authors critically revised the manuscript for intellectual content and approved the version to be published.

Corresponding author

Correspondence to Arjun Sahgal.

Ethics declarations

Conflict of interest

WLO, SW, HS, SM, JD, ZH, PM, LM declare they have no financial interests. CT has been an advisor/consultant for Sanofi, received travel accommodations/expenses and honoraria for past educational seminars by Elekta and belongs to the Elekta MR Linac Research Consortium. SL is a member of the Elekta Gamma Knife ICON Expert Group. AS has been a consultant with Varian (Medical Advisory Group), Elekta (Gamma Knife Icon), BrainLAB, Merck, Abbvie, Roche; Board Member to International Stereotactic Radiosurgery Society (ISRS); Advisory Board with VieCure; Co-Chair with AO Spine Knowledge Forum Tumor; received honorarium for past educational seminars with AstraZeneca, Elekta AB, Varian (CNS Teaching Faculty), BrainLAB, Medtronic Kyphon, Accuray; research grant with Elekta AB, Varian; and travel accommodations/expenses by Elekta, Varian and BrainLAB; also belongs to the Elekta MR Linac Research Consortium, Elekta Spine, Elekta Oligometastases and Elekta Linac Based SRS Consortia.

Research involving human and animal rights

This article does not contain any studies with animals or human subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ong, W.L., Wong, S., Soliman, H. et al. Radiation myelopathy following stereotactic body radiation therapy for spine metastases. J Neurooncol 159, 23–31 (2022). https://doi.org/10.1007/s11060-022-04037-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-022-04037-0

Keywords

Navigation