Skip to main content

Advertisement

Log in

Brain stem gliomas and current landscape

  • Topic Review
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Purpose

CNS malignancies are currently the most common cause of disease related deaths in children. Although brainstem gliomas are invariably fatal cancers in children, clinical studies against this disease are limited. This review is to lead to a succinct collection of knowledge of known biological mechanisms of this disease and discuss available therapeutics.

Methods

A hallmark of brainstem gliomas are mutations in the histone H3.3 with the majority of cases expressing the mutation K27M on histone 3.3. Recent studies using whole genome sequencing have revealed other mutations associated with disease. Current standard clinical practice may merely involve radiation and/or chemotherapy with little hope for long term survival. Here we discuss the potential of new therapies.

Conclusion

Despite the lack of treatment options using frequently practiced clinical techniques, immunotherapeutic strategies have recently been developed to target brainstem gliomas. To target brainstem gliomas, investigators are evaluating the use of broad non-targeted therapy with immune checkpoint inhibitors. Alternatively, others have begun to explore adoptive T cell strategies against these fatal malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Freeman CR, Farmer JP (1998) Pediatric brain stem gliomas: a review. Int J Radiat Oncol Biol Phys 40(2):265–271

    Article  CAS  PubMed  Google Scholar 

  2. Cohen KJ et al (2011) Temozolomide in the treatment of children with newly diagnosed diffuse intrinsic pontine gliomas: a report from the Children's oncology group. Neuro-Oncology 13(4):410–416

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ostrom QT et al (2015) Alex's lemonade stand foundation infant and childhood primary brain and central nervous system tumors diagnosed in the United States in 2007-2011. Neuro-Oncology 16(Suppl 10):x1–x36

    Article  PubMed  Google Scholar 

  4. Donaldson SS, Laningham F, Fisher PG (2006) Advances toward an understanding of brainstem gliomas. J Clin Oncol 24(8):1266–1272

    Article  CAS  PubMed  Google Scholar 

  5. Freeman CR, Perilongo G (1999) Chemotherapy for brain stem gliomas. Childs Nerv Syst 15(10):545–553

    Article  CAS  PubMed  Google Scholar 

  6. Schwartzentruber J et al (2012) Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482(7384):226–231

    Article  CAS  PubMed  Google Scholar 

  7. Wu G et al (2012) Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 44(3):251–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sturm D et al (2012) Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22(4):425–437

    Article  CAS  PubMed  Google Scholar 

  9. Bender S et al (2013) Reduced H3K27me3 and DNA hypomethylation are major drivers of gene expression in K27M mutant pediatric high-grade gliomas. Cancer Cell 24(5):660–672

    Article  CAS  PubMed  Google Scholar 

  10. Lewis PW et al (2013) Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science 340(6134):857–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wu G et al (2014) The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat Genet 46(5):444–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pollack IF et al (2001) Age and TP53 mutation frequency in childhood malignant gliomas: results in a multi-institutional cohort. Cancer Res 61(20):7404–7407

    CAS  PubMed  Google Scholar 

  13. Schroeder KM, Hoeman CM, Becher OJ (2014) Children are not just little adults: recent advances in understanding of diffuse intrinsic pontine glioma biology. Pediatr Res 75(1–2):205–209

    Article  CAS  PubMed  Google Scholar 

  14. Frappaz D et al (2008) Preradiation chemotherapy may improve survival in pediatric diffuse intrinsic brainstem gliomas: final results of BSG 98 prospective trial. Neuro-Oncology 10(4):599–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu YM et al (1998) Prognostic factors and therapeutic options of radiotherapy in pediatric brain stem gliomas. Jpn J Clin Oncol 28(8):474–479

    Article  CAS  PubMed  Google Scholar 

  16. Negretti L et al (2011) Hypofractionated radiotherapy in the treatment of diffuse intrinsic pontine glioma in children: a single institution's experience. J Neuro-Oncol 104(3):773–777

    Article  Google Scholar 

  17. Albright AL et al (1986) Prognostic factors in pediatric brain-stem gliomas. J Neurosurg 65(6):751–755

    Article  CAS  PubMed  Google Scholar 

  18. Farmer JP et al (2001) Brainstem gliomas. A 10-year institutional review. Pediatr Neurosurg 34(4):206–214

    Article  CAS  PubMed  Google Scholar 

  19. Chintagumpala M, Gajjar A (2015) Brain tumors. Pediatr Clin N Am 62(1):167–178

    Article  Google Scholar 

  20. Mauffrey C (2006) Paediatric brainstem gliomas: prognostic factors and management. J Clin Neurosci 13(4):431–437

    Article  CAS  PubMed  Google Scholar 

  21. Sethi R et al (2011) Prospective neuraxis MRI surveillance reveals a high risk of leptomeningeal dissemination in diffuse intrinsic pontine glioma. J Neuro-Oncol 102(1):121–127

    Article  Google Scholar 

  22. Singh R et al (2016) A novel magnetic resonance imaging segmentation technique for determining diffuse intrinsic pontine glioma tumor volume. J Neurosurg Pediatr 18(5):565–572

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chittiboina P et al (2014) Magnetic resonance imaging properties of convective delivery in diffuse intrinsic pontine gliomas. J Neurosurg Pediatr 13(3):276–282

    Article  PubMed  PubMed Central  Google Scholar 

  24. Poretti A, Meoded A, Huisman TA (2012) Neuroimaging of pediatric posterior fossa tumors including review of the literature. J Magn Reson Imaging 35(1):32–47

    Article  PubMed  Google Scholar 

  25. Tisnado J et al (2016) Conventional and advanced imaging of diffuse intrinsic Pontine glioma. J Child Neurol 31(12):1386–1393

    Article  PubMed  PubMed Central  Google Scholar 

  26. Albright AL et al (1993) Magnetic resonance scans should replace biopsies for the diagnosis of diffuse brain stem gliomas: a report from the Children's Cancer group. Neurosurgery 33(6):1026–1029 discussion 1029-30

    CAS  PubMed  Google Scholar 

  27. Wen DY et al (1993) Targeted brain biopsy: a comparison of freehand computed tomography-guided and stereotactic techniques. Neurosurgery 32(3):407–412 discussion 412-3

    Article  CAS  PubMed  Google Scholar 

  28. McGirt MJ et al (2003) MRI-guided stereotactic biopsy in the diagnosis of glioma: comparison of biopsy and surgical resection specimen. Surg Neurol 59(4):277–281 discussion 281-2

    Article  PubMed  Google Scholar 

  29. Bernstein M, Parrent AG (1994) Complications of CT-guided stereotactic biopsy of intra-axial brain lesions. J Neurosurg 81(2):165–168

    Article  CAS  PubMed  Google Scholar 

  30. Quick-Weller J et al (2017) Benefit and complications of frame-based stereotactic biopsy in old and very old patients. World Neurosurg 102:442–448

    Article  PubMed  Google Scholar 

  31. Khuong-Quang DA et al (2012) K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol 124(3):439–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Buczkowicz P et al (2014) Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations. Nat Genet 46(5):451–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Elsasser SJ, Allis CD, Lewis PW (2011) Cancer. New epigenetic drivers of cancers. Science 331(6021):1145–1146

    Article  CAS  PubMed  Google Scholar 

  34. Castel D et al (2015) Histone H3F3A and HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes. Acta Neuropathol 130(6):815–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Simon JA, Lange CA (2008) Roles of the EZH2 histone methyltransferase in cancer epigenetics. Mutat Res 647(1–2):21–29

    Article  CAS  PubMed  Google Scholar 

  36. Margueron R, Reinberg D (2011) The Polycomb complex PRC2 and its mark in life. Nature 469(7330):343–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chan KM et al (2013) The histone H3.3K27M mutation in pediatric glioma reprograms H3K27 methylation and gene expression. Genes Dev 27(9):985–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li B et al (2009) Histone H3 lysine 36 dimethylation (H3K36me2) is sufficient to recruit the Rpd3s histone deacetylase complex and to repress spurious transcription. J Biol Chem 284(12):7970–7976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Barski A et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129(4):823–837

    Article  CAS  PubMed  Google Scholar 

  40. Monje M et al (2011) Hedgehog-responsive candidate cell of origin for diffuse intrinsic pontine glioma. Proc Natl Acad Sci U S A 108(11):4453–4458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Taylor KR et al (2014) Recurrent activating ACVR1 mutations in diffuse intrinsic pontine glioma. Nat Genet 46(5):457–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gomes WA, Mehler MF, Kessler JA (2003) Transgenic overexpression of BMP4 increases astroglial and decreases oligodendroglial lineage commitment. Dev Biol 255(1):164–177

    Article  CAS  PubMed  Google Scholar 

  43. Shore EM et al (2006) A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva. Nat Genet 38(5):525–527

    Article  CAS  PubMed  Google Scholar 

  44. Shore EM, Kaplan FS (2011) Role of altered signal transduction in heterotopic ossification and fibrodysplasia ossificans progressiva. Curr Osteoporos Rep 9(2):83–88

    Article  PubMed  PubMed Central  Google Scholar 

  45. Chaikuad A et al (2012) Structure of the bone morphogenetic protein receptor ALK2 and implications for fibrodysplasia ossificans progressiva. J Biol Chem 287(44):36990–36998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hoeman, C.M., et al., ACVR1 R206H cooperates with H3.1K27M in promoting diffuse intrinsic pontine glioma pathogenesis. Nat Commun, 2019. 10(1): p. 1023

  47. Parrales A, Iwakuma T (2015) Targeting oncogenic mutant p53 for Cancer therapy. Front Oncol 5:288

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lowe SW et al (1993) p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74(6):957–967

    Article  CAS  PubMed  Google Scholar 

  49. Lowe SW et al (1994) p53 status and the efficacy of cancer therapy in vivo. Science 266(5186):807–810

    Article  CAS  PubMed  Google Scholar 

  50. Paugh BS et al (2011) Genome-wide analyses identify recurrent amplifications of receptor tyrosine kinases and cell-cycle regulatory genes in diffuse intrinsic pontine glioma. J Clin Oncol 29(30):3999–4006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Verhaak RG et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1):98–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sanai N (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma. World Neurosurg 74(1):4–5

    Article  PubMed  Google Scholar 

  53. Paugh BS et al (2010) Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease. J Clin Oncol 28(18):3061–3068

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hashizume R et al (2014) Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma. Nat Med 20(12):1394–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Agger K et al (2007) UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 449(7163):731–734

    Article  CAS  PubMed  Google Scholar 

  56. Hong S et al (2007) Identification of JmjC domain-containing UTX and JMJD3 as histone H3 lysine 27 demethylases. Proc Natl Acad Sci U S A 104(47):18439–18444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hubner MR, Spector DL (2010) Role of H3K27 demethylases Jmjd3 and UTX in transcriptional regulation. Cold Spring Harb Symp Quant Biol 75:43–49

    Article  CAS  PubMed  Google Scholar 

  58. Ramaswamy V, Remke M, Taylor MD (2014) An epigenetic therapy for diffuse intrinsic pontine gliomas. Nat Med 20(12):1378–1379

    Article  CAS  PubMed  Google Scholar 

  59. Piunti A et al (2017) Therapeutic targeting of polycomb and BET bromodomain proteins in diffuse intrinsic pontine gliomas. Nat Med 23(4):493–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Herz HM et al (2014) Histone H3 lysine-to-methionine mutants as a paradigm to study chromatin signaling. Science 345(6200):1065–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Marks PA et al (2004) Histone deacetylase inhibitors: development as cancer therapy. Novartis Found Symp 259:269–281 discussion 281-8

    CAS  PubMed  Google Scholar 

  62. Grasso CS et al (2015) Functionally defined therapeutic targets in diffuse intrinsic pontine glioma. Nat Med 21(7):827

    Article  CAS  PubMed  Google Scholar 

  63. Hennika T et al (2017) Pre-clinical study of Panobinostat in Xenograft and genetically engineered murine diffuse intrinsic Pontine glioma models. PLoS One 12(1):e0169485

    Article  PubMed  PubMed Central  Google Scholar 

  64. Nagaraja S et al (2017) Transcriptional dependencies in diffuse intrinsic Pontine glioma. Cancer Cell 31(5):635–652 e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pal S et al (2018) Dual HDAC and PI3K inhibition abrogates NFkappaB- and FOXM1-mediated DNA damage response to Radiosensitize pediatric high-grade gliomas. Cancer Res 78(14):4007–4021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Singleton WGB et al (2018) The distribution, clearance, and brainstem toxicity of panobinostat administered by convection-enhanced delivery. J Neurosurg Pediatr 22(3):288–296

    Article  PubMed  Google Scholar 

  67. Lin GL et al (2018) Non-inflammatory tumor microenvironment of diffuse intrinsic pontine glioma. Acta Neuropathol Commun 6(1):51

    Article  PubMed  PubMed Central  Google Scholar 

  68. Lieberman NAP et al (2019) Characterization of the immune microenvironment of diffuse intrinsic pontine glioma: implications for development of immunotherapy. Neuro-Oncology 21(1):83–94

    Article  CAS  PubMed  Google Scholar 

  69. Hwang WL et al (2018) Safety of combining radiotherapy with immune-checkpoint inhibition. Nat Rev Clin Oncol 15(8):477–494

    Article  PubMed  Google Scholar 

  70. Bouffet E et al (2016) Immune checkpoint inhibition for Hypermutant glioblastoma Multiforme resulting from germline Biallelic mismatch repair deficiency. J Clin Oncol 34(19):2206–2211

    Article  CAS  PubMed  Google Scholar 

  71. Majzner RG et al (2017) Assessment of programmed death-ligand 1 expression and tumor-associated immune cells in pediatric cancer tissues. Cancer 123(19):3807–3815

    Article  CAS  PubMed  Google Scholar 

  72. Wintterle S et al (2003) Expression of the B7-related molecule B7-H1 by glioma cells: a potential mechanism of immune paralysis. Cancer Res 63(21):7462–7467

    CAS  PubMed  Google Scholar 

  73. Hirano F et al (2005) Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Res 65(3):1089–1096

    Article  CAS  PubMed  Google Scholar 

  74. Zeng J et al (2013) Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int J Radiat Oncol Biol Phys 86(2):343–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Auvray M et al (2019) Second-line targeted therapies after nivolumab-ipilimumab failure in metastatic renal cell carcinoma. Eur J Cancer 108:33–40

    Article  CAS  PubMed  Google Scholar 

  76. Zaretsky JM et al (2016) Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med 375(9):819–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Skoulidis F et al (2018) STK11/LKB1 mutations and PD-1 inhibitor resistance in KRAS-mutant lung adenocarcinoma. Cancer Discov 8(7):822–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Blumenthal DT et al (2016) Pembrolizumab: first experience with recurrent primary central nervous system (CNS) tumors. J Neuro-Oncol 129(3):453–460

    Article  CAS  Google Scholar 

  79. Kline C et al (2018) Reirradiation and PD-1 inhibition with nivolumab for the treatment of recurrent diffuse intrinsic pontine glioma: a single-institution experience. J Neuro-Oncol 140(3):629–638

    Article  CAS  Google Scholar 

  80. Wildes TJ et al (2018) Cross-talk between T cells and hematopoietic stem cells during adoptive cellular therapy for malignant glioma. Clin Cancer Res 24(16):3955–3966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Morgan RA et al (2012) Recognition of glioma stem cells by genetically modified T cells targeting EGFRvIII and development of adoptive cell therapy for glioma. Hum Gene Ther 23(10):1043–1053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Maude SL et al (2014) Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 371(16):1507–1517

    Article  PubMed  PubMed Central  Google Scholar 

  83. Gardner RA et al (2017) Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults. Blood 129(25):3322–3331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhou Z et al (2013) B7-H3, a potential therapeutic target, is expressed in diffuse intrinsic pontine glioma. J Neuro-Oncol 111(3):257–264

    Article  CAS  Google Scholar 

  85. Tang X et al (2019) B7-H3 as a novel CAR-T therapeutic target for glioblastoma. Mol Ther Oncolytics 14:279–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Majzner RG et al (2019) CAR T cells targeting B7-H3, a pan-Cancer antigen, demonstrate potent preclinical activity against pediatric solid tumors and brain tumors. Clin Cancer Res 25(8):2560–2574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Mount CW et al (2018) Potent antitumor efficacy of anti-GD2 CAR T cells in H3-K27M(+) diffuse midline gliomas. Nat Med 24(5):572–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This review was funded by the Michael Mosier Defeat DIPG Foundation (CF).

Availability of data and material

This review does not contain new unpublished data.

Code availability

No code was used to for this review.

Funding

This is review is funded by the Michael Mosier Defeat DIPG Foundation.

Author information

Authors and Affiliations

Authors

Contributions

BW and DW conducted literature searches and wrote the body; CF was responsible for editing, oversight, and funding.

Corresponding author

Correspondence to Catherine Flores.

Ethics declarations

Conflict of interest

CF has interest in iOncologi, an immunobiology company.

Ethics approval

No ethics approval was required for this review.

Consent to participate

No consent was required for this review.

Consent for publication

No consent for publication was required for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wummer, B., Woodworth, D. & Flores, C. Brain stem gliomas and current landscape. J Neurooncol 151, 21–28 (2021). https://doi.org/10.1007/s11060-020-03655-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-020-03655-w

Keywords

Navigation