Skip to main content
Log in

The expression of the MSC-marker CD73 and of NF2/Merlin are correlated in meningiomas

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSC) have been found in various cancers and were discussed to influence tumor biology. Cells fulfilling the complete MSC criteria, including surface marker expression (CD73, CD90, CD105) and tri-lineage differentiation, have been isolated solely from a low percentage of high-grade meningiomas. In contrast, pure co-expression of the surface-markers was relatively frequent, raising the question for an additional role of these membrane proteins in meningiomas. Therefore, here we analyzed the expression of CD73, CD90 and CD105 in a series of meningiomas of all grades. Although no significant association of any marker with meningeal tumor growth per se or with tumor-grade was observed, we detected a positive Pearson correlation (r = 0.55, p ≤ 0.05) in low-grade tumors between CD73 and the most relevant tumor suppressor NF2/Merlin, supported by a tendency of lower CD73 expression in cases with allelic losses at the NF2-locus, which express significantly lower NF2/Merlin-mRNA (p ≤ 0.05). In two pairs of syngenous meningeal or meningioma cell lines with or without shRNA-mediated knockdown of NF2/Merlin a nearly complete loss of CD73 mRNA expression was observed after the knockdown (p ≤ 0.001). This suggested that the correlation observed in tumors may result from a direct functional link between Merlin and CD73. Since CD73 is a 5′-exonucleotidase (termed NT5E), we discuss a potential role of NT5E-mediated purinergic signaling to modulate actin-cytoskeleton and cell contacts, which may be a functional link to NF2/Merlin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mawrin C, Perry A (2010) Pathological classification and molecular genetics of meningiomas. J Neurooncol 99:379–391

    Article  CAS  PubMed  Google Scholar 

  2. Perry A, Scheithauer BW, Stafford SL, Lohse CM, Wollan PC (1999) “Malignancy” in meningiomas: a clinicopathologic study of 116 patients, with grading implications. Cancer 85:2046–2056

    CAS  PubMed  Google Scholar 

  3. Mawrin C, Chung C, Preusser M (2015) Biology and clinical management challenges in meningioma. American Society of Clinical Oncology educational book/ASCO American Society of Clinical Oncology Meeting, pp e106–e115. https://doi.org/10.14694/EdBook_AM.2015.35.e106

  4. Weber RG, Bostrom J, Wolter M, Baudis M, Collins VP, Reifenberger G, Lichter P (1997) Analysis of genomic alterations in benign, atypical, and anaplastic meningiomas: toward a genetic model of meningioma progression. Proc Natl Acad Sci USA 94:14719–14724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ruttledge MH, Sarrazin J, Rangaratnam S, Phelan CM, Twist E, Merel P, Delattre O, Thomas G, Nordenskjold M, Collins VP et al (1994) Evidence for the complete inactivation of the NF2 gene in the majority of sporadic meningiomas. Nat Genet 6:180–184

    Article  CAS  PubMed  Google Scholar 

  6. Ruttledge MH, Xie YG, Han FY, Peyrard M, Collins VP, Nordenskjold M, Dumanski JP (1994) Deletions on chromosome 22 in sporadic meningioma. Genes Chromosom Cancer 10:122–130

    Article  CAS  PubMed  Google Scholar 

  7. Kalamarides M, Stemmer-Rachamimov AO, Niwa-Kawakita M, Chareyre F, Taranchon E, Han ZY, Martinelli C, Lusis EA, Hegedus B, Gutmann DH, Giovannini M (2011) Identification of a progenitor cell of origin capable of generating diverse meningioma histological subtypes. Oncogene 30:2333–2344

    Article  CAS  PubMed  Google Scholar 

  8. Rhee K-J, Lee JI, Eom YW (2015) Mesenchymal stem cell-mediated effects of tumor support or suppression. Int J Mol Sci 16:30015–30033. https://doi.org/10.3390/ijms161226215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Norozi F, Ahmadzadeh A, Shahrabi S, Vosoughi T, Saki N (2016) Mesenchymal stem cells as a double-edged sword in suppression or progression of solid tumor cells. Tumor Biol 37:11679–11689. https://doi.org/10.1007/s13277-016-5187-7

    Article  CAS  Google Scholar 

  10. Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, Richardson AL, Polyak K, Tubo R, Weinberg RA (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449:557–563. https://doi.org/10.1038/nature06188

    Article  CAS  PubMed  Google Scholar 

  11. Shinagawa K, Kitadai Y, Tanaka M, Sumida T, Kodama M, Higashi Y, Tanaka S, Yasui W, Chayama K (2010) Mesenchymal stem cells enhance growth and metastasis of colon cancer. Int J Cancer 127:2323–2333. https://doi.org/10.1002/ijc.25440

    Article  CAS  PubMed  Google Scholar 

  12. Tsukamoto S, Honoki K, Fujii H, Tohma Y, Kido A, Mori T, Tsujiuchi T, Tanaka Y (2012) Mesenchymal stem cells promote tumor engraftment and metastatic colonization in rat osteosarcoma model. Int J Oncol 40:163–169. https://doi.org/10.3892/ijo.2011.1220

    CAS  PubMed  Google Scholar 

  13. Comsa S, Ciuculescu F, Raica M (2012) Mesenchymal stem cell-tumor cell cooperation in breast cancer vasculogenesis. Molecular medicine reports 5:1175–1180. https://doi.org/10.3892/mmr.2012.796

    CAS  PubMed  Google Scholar 

  14. Weber CE, Kothari AN, Wai PY, Li NY, Driver J, Zapf MA, Franzen CA, Gupta GN, Osipo C, Zlobin A, Syn WK, Zhang J, Kuo PC, Mi Z (2015) Osteopontin mediates an MZF1-TGF-beta1-dependent transformation of mesenchymal stem cells into cancer-associated fibroblasts in breast cancer. Oncogene 34:4821–4833. https://doi.org/10.1038/onc.2014.410

    Article  CAS  PubMed  Google Scholar 

  15. Coffman LG, Choi YJ, McLean K, Allen BL, di Magliano MP, Buckanovich RJ (2016) Human carcinoma-associated mesenchymal stem cells promote ovarian cancer chemotherapy resistance via a BMP4/HH signaling loop. Oncotarget 7:6916–6932. https://doi.org/10.18632/oncotarget.6870

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hu D, Wang X, Mao Y, Zhou L (2012) Identification of CD105 (endoglin)-positive stem-like cells in rhabdoid meningioma. J Neurooncol 106:505–517

    Article  PubMed  Google Scholar 

  17. Lim HY, Kim KM, Kim BK, Shim JK, Lee JH, Huh YM, Kim SH, Kim EH, Park EK, Shim KW, Chang JH, Kim DS, Kim SH, Hong YK, Lee SJ, Kang SG (2013) Isolation of mesenchymal stem-like cells in meningioma specimens. Int J Oncol 43:1260–1268. https://doi.org/10.3892/ijo.2013.2053

    Article  CAS  PubMed  Google Scholar 

  18. Duff SE, Li C, Garland JM, Kumar S (2003) CD105 is important for angiogenesis: evidence and potential applications. FASEB J 17:984–992. https://doi.org/10.1096/fj.02-0634rev

    Article  CAS  PubMed  Google Scholar 

  19. Dallas NA, Samuel S, Xia L, Fan F, Gray MJ, Lim SJ, Ellis LM (2008) Endoglin (CD105): a marker of tumor vasculature and potential target for therapy. Clin Cancer Res 14:1931–1937. https://doi.org/10.1158/1078-0432.ccr-07-4478

    Article  CAS  PubMed  Google Scholar 

  20. Barresi V, Cerasoli S, Vitarelli E, Tuccari G (2007) Density of microvessels positive for CD105 (endoglin) is related to prognosis in meningiomas. Acta Neuropathol 114:147–156. https://doi.org/10.1007/s00401-007-0251-4

    Article  CAS  PubMed  Google Scholar 

  21. Barresi V, Cerasoli S, Tuccari G (2008) Correlative evidence that tumor cell-derived caveolin-1 mediates angiogenesis in meningiomas. Neuropathology 28:472–478. https://doi.org/10.1111/j.1440-1789.2008.00902.x

    Article  PubMed  Google Scholar 

  22. Barresi V, Alafaci C, Salpietro F, Tuccari G (2008) Sstr2A immunohistochemical expression in human meningiomas: is there a correlation with the histological grade, proliferation or microvessel density? Oncol Rep 20:485–492

    CAS  PubMed  Google Scholar 

  23. Ling C, Pouget C, Rech F, Pflaum R, Treffel M, Bielle F, Mokhtari K, Casse JM, Vignaud JM, Kalamarides M, Peyre M, Gauchotte G (2016) Endothelial cell hypertrophy and microvascular proliferation in meningiomas are correlated with higher histological grade and shorter progression-free survival. J Neuropathol Exp Neurol 75:1160–1170. https://doi.org/10.1093/jnen/nlw095

    Article  CAS  PubMed  Google Scholar 

  24. Inoue A, Tanaka J, Takahashi H, Kohno S, Ohue S, Umakoshi A, Gotoh K, Ohnishi T (2016) Blood vessels expressing CD90 in human and rat brain tumors. Neuropathology 36:168–180. https://doi.org/10.1111/neup.12244

    Article  CAS  PubMed  Google Scholar 

  25. Di Virgilio F, Adinolfi E (2017) Extracellular purines, purinergic receptors and tumor growth. Oncogene 36:293–303. https://doi.org/10.1038/onc.2016.206

    Article  PubMed  Google Scholar 

  26. Mawrin C, Wolke C, Haase D, Kruger S, Firsching R, Keilhoff G, Paulus W, Gutmann DH, Lal A, Lendeckel U (2010) Reduced activity of cd13/aminopeptidase n (APN) in aggressive meningiomas is associated with increased levels of SPARC. Brain Pathol 20:200–210

    Article  CAS  PubMed  Google Scholar 

  27. Pachow D, Andrae N, Kliese N, Angenstein F, Stork O, Wilisch-Neumann A, Kirches E, Mawrin C (2013) mTORC1 inhibitors suppress meningioma growth in mouse models. Clin Cancer Res 19:1180–1189

    Article  CAS  PubMed  Google Scholar 

  28. Puttmann S, Senner V, Braune S, Hillmann B, Exeler R, Rickert CH, Paulus W (2005) Establishment of a benign meningioma cell line by hTERT-mediated immortalization. Lab Invest 85:1163–1171

    Article  PubMed  Google Scholar 

  29. Striedinger K, Vandenberg SR, Baia GS, McDermott MW, Gutmann DH, Lal A (2008) The neurofibromatosis 2 tumor suppressor gene product, merlin, regulates human meningioma cell growth by signaling through YAP. Neoplasia 10:1204–1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Amin ND, Bai G, Klug JR, Bonanomi D, Pankratz MT, Gifford WD, Hinckley CA, Sternfeld MJ, Driscoll SP, Dominguez B, Lee K-F, Jin X, Pfaff SL (2015) Loss of motoneuron-specific microRNA-218 causes systemic neuromuscular failure. Science 350:1525–1529. https://doi.org/10.1126/science.aad2509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Allard B, Beavis PA, Darcy PK, Stagg J (2016) Immunosuppressive activities of adenosine in cancer. Curr Opin Pharmacol 29:7–16. https://doi.org/10.1016/j.coph.2016.04.001

    Article  CAS  PubMed  Google Scholar 

  32. Young A, Ngiow SF, Barkauskas DS, Sult E, Hay C, Blake SJ, Huang Q, Liu J, Takeda K, Teng MW, Sachsenmeier K, Smyth MJ (2016) Co-inhibition of CD73 and A2AR adenosine signaling improves anti-tumor immune responses. Cancer Cell 30:391–403. https://doi.org/10.1016/j.ccell.2016.06.025

    Article  CAS  PubMed  Google Scholar 

  33. Wang L, Tang S, Wang Y, Xu S, Yu J, Zhi X, Ou Z, Yang J, Zhou P, Shao Z (2013) Ecto-5′-nucleotidase (CD73) promotes tumor angiogenesis. Clin Exp Metastas 30:671–680. https://doi.org/10.1007/s10585-013-9571-z

    Article  CAS  Google Scholar 

  34. Turcotte M, Spring K, Pommey S, Chouinard G, Cousineau I, George J, Chen GM, Gendoo DM, Haibe-Kains B, Karn T, Rahimi K, Le Page C, Provencher D, Mes-Masson AM, Stagg J (2015) CD73 is associated with poor prognosis in high-grade serous ovarian cancer. Cancer Res 75:4494–4503. https://doi.org/10.1158/0008-5472.can-14-3569

    Article  CAS  PubMed  Google Scholar 

  35. Loi S, Pommey S, Haibe-Kains B, Beavis PA, Darcy PK, Smyth MJ, Stagg J (2013) CD73 promotes anthracycline resistance and poor prognosis in triple negative breast cancer. Proc Natl Acad Sci USA 110:11091–11096. https://doi.org/10.1073/pnas.1222251110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ren ZH, Lin CZ, Cao W, Yang R, Lu W, Liu ZQ, Chen YM, Yang X, Tian Z, Wang LZ, Li J, Wang X, Chen WT, Ji T, Zhang CP (2016) CD73 is associated with poor prognosis in HNSCC. Oncotarget 7:61690–61702. https://doi.org/10.18632/oncotarget.11435

    PubMed  PubMed Central  Google Scholar 

  37. James MF, Manchanda N, Gonzalez-Agosti C, Hartwig JH, Ramesh V (2001) The neurofibromatosis 2 protein product merlin selectively binds F-actin but not G-actin, and stabilizes the filaments through a lateral association. Biochem J 356:377–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. James MF, Lelke JM, Maccollin M, Plotkin SR, Stemmer-Rachamimov AO, Ramesh V, Gusella JF (2008) Modeling NF2 with human arachnoidal and meningioma cell culture systems: NF2 silencing reflects the benign character of tumor growth. Neurobiol Dis 29:278–292. https://doi.org/10.1016/j.nbd.2007.09.002

    Article  CAS  PubMed  Google Scholar 

  39. Stamenkovic I, Yu Q (2010) Merlin, a “magic” linker between the extracellular cues and intracellular signaling pathways that regulate cell motility, proliferation, and survival. Curr Protein Pept Sci 11:471–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gao ZW, Dong K, Zhang HZ (2014) The roles of CD73 in cancer. BioMed Res Int 2014:460654. https://doi.org/10.1155/2014/460654

    PubMed  PubMed Central  Google Scholar 

  41. Bowser JL, Blackburn MR, Shipley GL, Molina JG, Dunner K Jr, Broaddus RR (2016) Loss of CD73-mediated actin polymerization promotes endometrial tumor progression. J Clin Invest 126:220–238. https://doi.org/10.1172/jci79380

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The technical assistance of Sandra Hartmann and Leona Bueck is highly appreciated.

Funding

This study was funded partly by grants from the DFG (Grant # MA2530/6-1 and MA2530/8-1), the Wilhelm Sander-Stiftung (Grant #2014.092.1), and the Deutsche Krebshilfe (Grant #111853) (all to C.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Mawrin.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 104 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirches, E., Steffen, T., Waldt, N. et al. The expression of the MSC-marker CD73 and of NF2/Merlin are correlated in meningiomas. J Neurooncol 138, 251–259 (2018). https://doi.org/10.1007/s11060-018-2807-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-018-2807-7

Keywords

Navigation