Skip to main content
Log in

SPECT imaging and radionuclide therapy of glioma using 131I labeled Buthus martensii Karsch chlorotoxin

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Gliomas, the most prevalent type of brain tumor in adults, are associated with high rates of morbidity and mortality. Recent studies on 131I labeled scorpion toxins suggest they can be developed as tumor-specific agents for glioma diagnosis and treatment. This study investigated the potential of 131I labeled Buthus martensii Karsch chlorotoxin (131I-BmK CT) as a new approach for targeted imaging and therapy of glioma. The results showed that 131I can be successfully linked to BmK CT with satisfactory radiochemical purity and stability and that 131I-BmK CT markedly inhibited glioma cell growth in a dose and time dependent manner, with significant accumulation in glioma cells in vitro. Persistent intratumoral radioiodine retention and specific accumulation of 131I-BmK CT were observed in C6 glioma tumor, which was clearly visualized by SPECT imaging. Both intratumoral and intravenous injections of 131I-BmK CT could result in significant tumor inhibition efficacy and prolonging the lifetime of tumor-bearing mice. Based on these promising results, it is concluded that 131I-BmK CT has the potential to be explored as a novel tool for SPECT imaging and radionuclide therapy of glioma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359(5):492–507

    Article  CAS  PubMed  Google Scholar 

  2. Paw I, Carpenter RC, Watabe K, Debinski W, Lo HW (2015) Mechanisms regulating glioma invasion. Cancer Lett 362(1):1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wu J, Waxman DJ (2014) Metronomic cyclophosphamide schedule-dependence of innate immune cell recruitment and tumor regression in an implanted glioma model. Cancer Lett 353(2):272–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Haley EM, Kim Y (2014) The role of basic fibroblast growth factor in glioblastoma multiforme and glioblastoma stem cells and in their in vitro culture. Cancer Lett 346(1):1–5

    Article  CAS  PubMed  Google Scholar 

  5. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10(5):459–466

    Article  CAS  PubMed  Google Scholar 

  6. Weller M, Cloughesy T, Perry JR, Wick W (2012) Standards of care for treatment of recurrent glioblastoma—are we there yet? Neuro Oncol 15(1):4–27

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhao L, Shi X, Zhao J (2015) Chlorotoxin-conjugated nanoparticles for targeted imaging and therapy of glioma. Curr Top Med Chem 15(13):1196–1208

    Article  CAS  PubMed  Google Scholar 

  8. DeBin JA, Strichartz GR (1991) Chloride channel inhibition by the venom of the scorpion Leiurus quinquestriatus. Toxicon 29(11):1403–1408

    Article  CAS  PubMed  Google Scholar 

  9. Zeng XC, Li WX, Zhu SY, Peng F, Zhu ZH et al (2000) Cloning and characterization of a cDNA sequence encoding the precursor of a chlorotoxin-like peptide from the Chinese scorpion Buthus martensii Karsch. Toxicon 38(8):1009–1014

    Article  CAS  PubMed  Google Scholar 

  10. Hockaday DC, Shen S, Fiveash J, Raubitschek A, Colcher D et al (2005) Imaging glioma extent with 131I-TM-601. J Nucl Med 46(4):580–586

    CAS  PubMed  Google Scholar 

  11. Mamelak AN, Rosenfeld S, Bucholz R, Raubitschek A, Nabors LB et al (2006) Phase I single-dose study of intracavitary-administered Iodine-131-TM-601 in adults with recurrent high-grade glioma. J Clin Oncol 24(22):3644–3650

    Article  CAS  PubMed  Google Scholar 

  12. TransMolecular (2009) Final results from its Phase 2 clinical study of 131I-TM601. http://www.news-medical.net/news/20091024/TransMolecular-announces-final-results-from-its-Phase-2-clinical-study-of-131I-TM601.aspx. Accessed 20 June 2016

  13. Cheng Y, Zhu J, Zhao L, Xiong Z, Tang Y et al (2016) 131I-labeled multifunctional dendrimers modified with BmK CT for targeted SPECT imaging and radiotherapy of gliomas. Nanomedicin 11(10):1253–1266

    Article  CAS  Google Scholar 

  14. Zhao J, Qiao W, Zhang Y, Shao X (2010) Preparation and in vitro evaluation of 131I-BmK CT as a glioma-targeted agent. Cancer Biother Radiopharm 25(3):353–359

    Article  CAS  PubMed  Google Scholar 

  15. Qin C, He B, Dai W, Lin Z, Zhang H et al (2014) The impact of a chlorotoxin-modified liposome system on receptor MMP-2 and the receptor-associated protein ClC-3. Biomaterials 35(22):5908–5920

    Article  CAS  PubMed  Google Scholar 

  16. Mamelak AN, Jacoby DB (2007) Targeted delivery of antitumoral therapy to glioma and other malignancies with synthetic chlorotoxin (TM-601). Expert Opin Drug Deliv 4(2):175–186

    Article  CAS  PubMed  Google Scholar 

  17. Dardevet L, Rani D, Aziz TA, Bazin I, Sabatier JM et al (2015) Chlorotoxin: a helpful natural scorpion peptide to diagnose glioma and fight tumor invasion. Toxins 7(4):1079–1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Samnick S, Romeike BF, Lehmann T, Israel I, Rübe C et al (2009) Efficacy of systemic radionuclide therapy with p-131I-iodo-l-phenylalanine combined with external beam photon irradiation in treating malignant gliomas. J Nucl Med 50(12):2025–2032

    Article  PubMed  Google Scholar 

  19. McCluskey AG, Mairs RJ, Tesson M, Pimlott SL, Babich JW et al (2012) Inhibition of poly(adp-ribose) polymerase enhances the toxicity of 131i-metaiodobenzylguanidine/topotecan combination therapy to cells and xenografts that express the noradrenaline transporter. J Nucl Med 53(7):1146–1154

    Article  CAS  PubMed  Google Scholar 

  20. Pruszynski M, Koumarianou E, Vaidyanathan G, Revets H, Devoogdt N et al (2014) Improved tumor targeting of anti-HER2 nanobody through n-succinimidyl 4-guanidinomethyl-3-iodobenzoate radiolabeling. J Nucl Med 55(4):650–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhao L, Zhu J, Cheng Y, Xiong Z, Tang Y et al (2015) Chlorotoxin-conjugated multifunctional dendrimers labeled with radionuclide 131I for single photon emission computed tomography imaging and radiotherapy of gliomas. ACS Appl Mater Interfaces 7(35):19798–19808

    Article  CAS  PubMed  Google Scholar 

  22. Ding J, Chua PJ, Bay BH, Gopalakrishnakone P (2014) Scorpion venoms as a potential source of novel cancer therapeutic compounds. Exp Biol Med 239(4):387–393

    Article  Google Scholar 

  23. Fan S, Sun Z, Jiang D, Dai C, Ma Y et al (2010) BmKCT toxin inhibits glioma proliferation and tumor metastasis. Cancer Lett 291(2):158–166

    Article  CAS  PubMed  Google Scholar 

  24. Fu YJ, An N, Chan KG, Wu YB, Zheng SH et al (2011) A model of BmK CT in inhibiting glioma cell migration via matrix metalloproteinase-2 from experimental and molecular dynamics simulation study. Biotechnol Lett 33(7):1309–1317

    Article  CAS  PubMed  Google Scholar 

  25. Chen J, Zhu S, Tong L, Li J, Chen F et al (2014) Superparamagnetic iron oxide nanoparticles mediated 131I-hVEGF siRNA inhibits hepatocellular carcinoma tumor growth in nude mice. BMC Cancer 14(1):1–8

    Article  Google Scholar 

  26. Visser GW, Klok RP, Gebbinck JW, ter Linden T, van Dongen GA et al (2001) Optimal quality 131I-monoclonal antibodies on high-dose labeling in a large reaction volume and temporarily coating the antibody with IODO-GEN. J Nucl Med 42(3):509–519

    CAS  PubMed  Google Scholar 

  27. Mather SJ, McKenzie AJ, Sosabowski JK, Morris TM, Ellison D et al (2007) Selection of radiolabeled gastrin analogs for peptide receptor–targeted radionuclide therapy. J Nucl Med 48(4):615–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hahner S, Kreissl MC, Fassnacht M, Haenscheid H, Knoedler P et al (2012) [131I]Iodometomidate for targeted radionuclide therapy of advanced adrenocortical carcinoma. J Clin Endocrinol Metab 97(3):914–922

    Article  CAS  PubMed  Google Scholar 

  29. Li CC, Chi JL, Ma Y, Li JH, Xia CQ et al (2014) Interventional therapy for human breast cancer in nude mice with 131I gelatin microspheres (131I-GMSs) following intratumoral injection. Radiat Oncol 9(1):1–9

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Numbers 81301245, 81401440 and 81671712), Shanghai Sailing Program (Grant Number 16YF1409300) and the Shanghai Municipal Commission of Health and Family Planning (Grant Number 20134y160).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinhua Zhao.

Additional information

Wenli Qiao, Lingzhou Zhao and Shan Wu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 24039 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, W., Zhao, L., Wu, S. et al. SPECT imaging and radionuclide therapy of glioma using 131I labeled Buthus martensii Karsch chlorotoxin. J Neurooncol 133, 287–295 (2017). https://doi.org/10.1007/s11060-017-2456-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-017-2456-2

Keywords

Navigation