Skip to main content

Advertisement

Log in

Combined BRAFV600E and MEK blockade for BRAFV600E-mutant gliomas

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

BRAFV600E is a common finding in glioma (about 10–60% depending on histopathologic subclassification). BRAFV600E monotherapy shows modest preclinical efficacy against BRAFV600E gliomas and also induces adverse secondary skin malignancies. Here, we examine the molecular mechanism of intrinsic resistance to BRAFV600E inhibition in glioma. Furthermore, we investigate BRAFV600E/MEK combination therapy that overcomes intrinsic resistance to BRAFV600E inhibitor and also prevents BRAFV600E inhibitor induced secondary malignancies. Immunoblotting and Human Phospho-Receptor Tyrosine Kinase Array assays were used to interrogate MAPK pathway activation. The cellular effect of BRAFV600E and MEK inhibition was determined by WST-1 viability assay and cell cycle analysis. Flanked and orthotopic GBM mouse models were used to investigate the in vivo efficacy of BRAFV600E/MEK combination therapy and the effect on secondary malignancies. BRAFV600E inhibition leads to recovery of ERK phosphorylation. Combined BRAFV600E and MEK inhibition prevents reactivation of the MAPK signaling, which correlates with decreased cell viability and augmented cell cycle arrest. Similarly, mice bearing BRAFV600E glioma showed reduced tumor growth when treated with a combination of BRAFV600E and MEK inhibitor compared to BRAFV600E inhibition alone. Additional benefit of BRAFV600E/MEK inhibition was reflected by reduced cutaneous squamous-cell carcinoma (cSCC) growth (a surrogate for RAS-driven secondary maligancies). In glioma, recovery of MAPK signaling upon BRAF inhibition accounts for intrinsic resistance to BRAFV600E inhibitor. Combined BRAFV600E and MEK inhibition prevents rebound of MAPK activation, resulting in enhanced antitumor efficacy and also reduces the risk of secondary malignancy development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W et al (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954. doi:10.1038/nature00766

    Article  CAS  PubMed  Google Scholar 

  2. Kimura ET, Nikiforova MN, Zhu Z, Knauf JA, Nikiforov YE, Fagin JA (2003) High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res 63:1454–1457

    CAS  PubMed  Google Scholar 

  3. Di Nicolantonio F, Martini M, Molinari F, Sartore-Bianchi A, Arena S, Saletti P, De Dosso S, Mazzucchelli L, Frattini M, Siena S et al (2008) Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol 26:5705–5712. doi:10.1200/JCO.2008.18.0786

    Article  CAS  PubMed  Google Scholar 

  4. Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA, O’Dwyer PJ, Lee RJ, Grippo JF, Nolop K et al (2010) Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 363:809–819. doi:10.1056/NEJMoa1002011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, Dummer R, Garbe C, Testori A, Maio M et al (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364:2507–2516. doi:10.1056/NEJMoa1103782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Prahallad A, Sun C, Huang S, Di Nicolantonio F, Salazar R, Zecchin D, Beijersbergen RL, Bardelli A, Bernards R (2012) Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature 483:100–103. doi:10.1038/nature10868

    Article  CAS  PubMed  Google Scholar 

  7. Montero-Conde C, Ruiz-Llorente S, Dominguez JM, Knauf JA, Viale A, Sherman EJ, Ryder M, Ghossein RA, Rosen N, Fagin JA (2013) Relief of feedback inhibition of HER3 transcription by RAF and MEK inhibitors attenuates their antitumor effects in BRAF-mutant thyroid carcinomas. Cancer Discov 3:520–533. doi:10.1158/2159-8290.CD-12-0531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huang PH, Xu AM, White FM (2009) Oncogenic EGFR signaling networks in glioma. Sci Signal 2:re6. doi:10.1126/scisignal.287re6

    PubMed  Google Scholar 

  9. Hatanpaa KJ, Burma S, Zhao D, Habib AA (2010) Epidermal growth factor receptor in glioma: signal transduction, neuropathology, imaging, and radioresistance. Neoplasia 12:675–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nicolaides TP, Li H, Solomon DA, Hariono S, Hashizume R, Barkovich K, Baker SJ, Paugh BS, Jones C, Forshew T et al (2011) Targeted therapy for BRAFV600E malignant astrocytoma. Clin Cancer Res 17:7595–7604. doi:10.1158/1078-0432.CCR-11-1456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Huillard E, Hashizume R, Phillips JJ, Griveau A, Ihrie RA, Aoki Y, Nicolaides T, Perry A, Waldman T, McMahon M et al (2012) Cooperative interactions of BRAFV600E kinase and CDKN2A locus deficiency in pediatric malignant astrocytoma as a basis for rational therapy. Proc Natl Acad Sci USA 109:8710–8715. doi:10.1073/pnas.1117255109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Robinson GW, Orr BA, Gajjar A (2014) Complete clinical regression of a BRAF V600E-mutant pediatric glioblastoma multiforme after BRAF inhibitor therapy. BMC Cancer 14:258-2407-14-258. doi:10.1186/1471-2407-14-258

    Article  Google Scholar 

  13. Bautista F, Paci A, Minard-Colin V, Dufour C, Grill J, Lacroix L, Varlet P, Valteau-Couanet D, Geoerger B (2014) Vemurafenib in pediatric patients with BRAFV600E mutated high-grade gliomas. Pediatr Blood Cancer 61:1101–1103. doi:10.1002/pbc.24891

    Article  CAS  PubMed  Google Scholar 

  14. Rush S, Foreman N, Liu A (2013) Brainstem ganglioglioma successfully treated with vemurafenib. J Clin Oncol 31:e159–e160. doi:10.1200/JCO.2012.44.1568

    Article  PubMed  Google Scholar 

  15. Spagnolo F, Ghiorzo P, Queirolo P (2014) Overcoming resistance to BRAF inhibition in BRAF-mutated metastatic melanoma. Oncotarget 5:10206–10221

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yao TW, Zhang J, Prados M, Weiss WA, James CD, Nicolaides T (2015) EGFR blockade prevents glioma escape from BRAFV600E targeted therapy. Oncotarget 6:21993–22005

    Article  PubMed  PubMed Central  Google Scholar 

  17. Su F, Viros A, Milagre C, Trunzer K, Bollag G, Spleiss O, Reis-Filho JS, Kong X, Koya RC, Flaherty KT et al (2012) RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors. N Engl J Med 366:207–215. doi:10.1056/NEJMoa1105358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hashizume R, Gupta N, Berger MS, Banerjee A, Prados MD, Ayers-Ringler J, James CD, VandenBerg SR (2010) Morphologic and molecular characterization of ATRT xenografts adapted for orthotopic therapeutic testing. Neuro Oncol 12:366–376. doi:10.1093/neuonc/nop033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Michaud K, Solomon DA, Oermann E, Kim JS, Zhong WZ, Prados MD, Ozawa T, James CD, Waldman T (2010) Pharmacologic inhibition of cyclin-dependent kinases 4 and 6 arrests the growth of glioblastoma multiforme intracranial xenografts. Cancer Res 70:3228–3238. doi:10.1158/0008-5472.CAN-09-4559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Silva JM, Bulman C, McMahon M (2014) BRAFV600E cooperates with PI3K signaling, independent of AKT, to regulate melanoma cell proliferation. Mol Cancer Res 12:447–463. doi:10.1158/1541-7786.MCR-13-0224-T

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xing F, Persaud Y, Pratilas CA, Taylor BS, Janakiraman M, She QB, Gallardo H, Liu C, Merghoub T, Hefter B et al (2012) Concurrent loss of the PTEN and RB1 tumor suppressors attenuates RAF dependence in melanomas harboring (V600E)BRAF. Oncogene 31:446–457. doi:10.1038/onc.2011.250

    Article  CAS  PubMed  Google Scholar 

  22. Meyer P, Klaes R, Schmitt C, Boettger MB, Garbe C (2003) Exclusion of BRAFV599E as a melanoma susceptibility mutation. Int J Cancer 106:78–80. doi:10.1002/ijc.11199

    Article  CAS  PubMed  Google Scholar 

  23. Levesque MJ, Ginart P, Wei Y, Raj A (2013) Visualizing SNVs to quantify allele-specific expression in single cells. Nat Methods 10:865–867. doi:10.1038/nmeth.2589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sosman JA, Kim KB, Schuchter L, Gonzalez R, Pavlick AC, Weber JS, McArthur GA, Hutson TE, Moschos SJ, Flaherty KT et al (2012) Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N Engl J Med 366:707–714. doi:10.1056/NEJMoa1112302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Long GV, Stroyakovskiy D, Gogas H, Levchenko E, de Braud F, Larkin J, Garbe C, Jouary T, Hauschild A, Grob JJ et al (2014) Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. N Engl J Med 371:1877–1888. doi:10.1056/NEJMoa1406037

    Article  PubMed  Google Scholar 

  26. Larkin J, Ascierto PA, Dreno B, Atkinson V, Liszkay G, Maio M, Mandala M, Demidov L, Stroyakovskiy D, Thomas L et al (2014) Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N Engl J Med 371:1867–1876. doi:10.1056/NEJMoa1408868

    Article  PubMed  Google Scholar 

  27. Tsai J, Lee JT, Wang W, Zhang J, Cho H, Mamo S, Bremer R, Gillette S, Kong J, Haass NK et al (2008) Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proc Natl Acad Sci USA 105:3041–3046. doi:10.1073/pnas.0711741105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tsavachidou D, Coleman ML, Athanasiadis G, Li S, Licht JD, Olson MF, Weber BL (2004) SPRY2 is an inhibitor of the ras/extracellular signal-regulated kinase pathway in melanocytes and melanoma cells with wild-type BRAF but not with the V599E mutant. Cancer Res 64:5556–5559. doi:10.1158/0008-5472.CAN-04-1669

    Article  CAS  PubMed  Google Scholar 

  29. Lito P, Rosen N, Solit DB (2013) Tumor adaptation and resistance to RAF inhibitors. Nat Med 19:1401–1409. doi:10.1038/nm.3392

    Article  CAS  PubMed  Google Scholar 

  30. Pratilas CA, Taylor BS, Ye Q, Viale A, Sander C, Solit DB, Rosen N (2009) (V600E)BRAF is associated with disabled feedback inhibition of RAF-MEK signaling and elevated transcriptional output of the pathway. Proc Natl Acad Sci USA 106:4519–4524. doi:10.1073/pnas.0900780106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lito P, Pratilas CA, Joseph EW, Tadi M, Halilovic E, Zubrowski M, Huang A, Wong WL, Callahan MK, Merghoub T et al (2012) Relief of profound feedback inhibition of mitogenic signaling by RAF inhibitors attenuates their activity in BRAFV600E melanomas. Cancer Cell 22:668–682. doi:10.1016/j.ccr.2012.10.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Martinho O, Zucca LE, Reis RM (2015) AXL as a modulator of sunitinib response in glioblastoma cell lines. Exp Cell Res 332:1–10. doi:10.1016/j.yexcr.2015.01.009

    Article  CAS  PubMed  Google Scholar 

  33. Stommel JM, Kimmelman AC, Ying H, Nabioullin R, Ponugoti AH, Wiedemeyer R, Stegh AH, Bradner JE, Ligon KL, Brennan C et al (2007) Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science 318:287–290

    Article  CAS  PubMed  Google Scholar 

  34. Bollag G, Hirth P, Tsai J, Zhang J, Ibrahim PN, Cho H, Spevak W, Zhang C, Zhang Y, Habets G et al (2010) Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 467:596–599. doi:10.1038/nature09454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nicolaides T, Yao TW, Yoshida Y, Zhang J, Ozawa T, James D (2014) Targeting resistance pathways in BRAF-mutant pediatric gliomas. Neuro. Oncol 16:iii27–iii28

    Google Scholar 

  36. Basile KJ, Abel EV, Dadpey N, Hartsough EJ, Fortina P, Aplin AE (2013) In vivo MAPK reporting reveals the heterogeneity in tumoral selection of resistance to RAF inhibitors. Cancer Res 73:7101–7110. doi:10.1158/0008-5472.CAN-13-1628

    Article  CAS  PubMed  Google Scholar 

  37. Flaherty KT, Infante JR, Daud A, Gonzalez R, Kefford RF, Sosman J, Hamid O, Schuchter L, Cebon J, Ibrahim N et al (2012) Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med 367:1694–1703. doi:10.1056/NEJMoa1210093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Corcoran RB, Ebi H, Turke AB, Coffee EM, Nishino M, Cogdill AP, Brown RD, Della Pelle P, Dias-Santagata D, Hung KE, et al (2012) EGFR-mediated re-activation of MAPK signaling contributes to insensitivity of BRAF mutant colorectal cancers to RAF inhibition with vemurafenib. Cancer Discov 2:227–235. doi:10.1158/2159-8290.CD-11-0341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhao Y, Adjei AA (2014) The clinical development of MEK inhibitors. Nat Rev Clin Oncol 11:385–400. doi:10.1038/nrclinonc.2014.83

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the St. Baldrick’s Foundation (TN), UCSF Resource Allocation program (TN), the Frank A Campini Foundation (TN), the National Institute for Neurological Disorders and Stroke (K08NS065268: TN; R01NS080619: CDJ), the National Cancer Institute (P50CA097257: TN, MP, CDJ; P30CA82103: WAW; U01CA176287: WAW; U54CA163155: WAW), the Pediatric Brain Tumor Foundation (WAW; TN) and the Samuel Waxman Cancer Research Foundation (WAW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodore Nicolaides.

Ethics declarations

Conflict of interest

None declared.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Yao, TW., Hashizume, R. et al. Combined BRAFV600E and MEK blockade for BRAFV600E-mutant gliomas. J Neurooncol 131, 495–505 (2017). https://doi.org/10.1007/s11060-016-2333-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-016-2333-4

Keywords

Navigation