Abstract
Malignant gliomas are the most common primary brain tumors and have poor clinical prognosis, despite multimodal therapeutic strategies. In recent years, ion channels have emerged as major players in tumor pathophysiology regarding all hallmarks of cancer. Since ion channels are easily accessible structures, they may prove to be effective targets for canner therapy, although their broad expression pattern and role in physiological processes should be taken into consideration. This review summarizes the current knowledge on the role of ion channels in the pathophysiology of malignant gliomas, especially glioblastoma, and evaluates their potential role in targeted antiglioma therapy.


Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Abbreviations
- AMPA:
-
α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor
- AQP:
-
Aquaporin
- BK:
-
Big conductance potassium channel
- ClC:
-
Chloride channel
- CNS:
-
Central nervous system
- EAG1:
-
Ether à go-go 1
- GABAA :
-
γ-aminobutyric acid receptor A
- gAMPA:
-
Glioma variant of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor
- gBK:
-
Glioma variant of big conductance potassium channel
- hERG1:
-
Human ether à go-go related 1
- K2P:
-
Two-pore domain potassium channel
- KA :
-
Inactivating A-type potassium channel
- KCa3.1:
-
Calcium-dependent intermediate-conductance potassium channel 3.1
- KCC3:
-
K+/Cl− cotransporter 3
- KCNH2:
-
Potassium voltage-gated channel, subfamily H, member 2
- KDR :
-
Delayed outwardly rectifying potassium channel
- Kir :
-
Inwardly rectifying potassium channel
- NBC:
-
Sodium/bicarbonate cotransporter
- NHE:
-
Sodium/proton exchanger
- NHERF1:
-
Sodium/proton exchanger regulatory factor 1
- NKCC:
-
Na+/K/+/Cl− cotransporters
- NKCC1:
-
Na+/K+/2Cl− cotransporter isoform 1
- siRNA:
-
Small interfering ribonucleic acid
- TEA:
-
Tetraethylammonium
- TMZ:
-
Temozolomide
- TRPC:
-
Transient receptor potential cation channel
- TRPM8:
-
Transient receptor potential, melastatin subfamily member 8
- VEGF:
-
Vascular endothelial growth factor
- WHO:
-
World Health Organization
References
Becchetti A (2011) Ion channels and transporters in cancer. 1. Ion channels and cell proliferation in cancer. Am J Physiol Cell Physiol 301:C255–C265
Soroceanu L, Manning TJ Jr, Sontheimer H (1999) Modulation of glioma cell migration and invasion using Cl(−) and K(+) ion channel blockers. J Neurosci 19:5942–5954
Prevarskaya N, Skryma R, Shuba Y (2010) Ion channels and the hallmarks of cancer. Trends Mol Med 16:107–121
Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109
Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, Hau P, Brandes AA, Gijtenbeek J, Marosi C, Vecht CJ, Mokhtari K, Wesseling P, Villa S, Eisenhauer E, Gorlia T, Weller M, Lacombe D, Cairncross JG, Mirimanoff RO (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466
von Deimling A, Louis DN, Wiestler OD (1995) Molecular pathways in the formation of gliomas. Glia 15:328–338
Louis DN (1994) The p53 gene and protein in human brain tumors. J Neuropathol Exp Neurol 53:11–21
Ye ZC, Rothstein JD, Sontheimer H (1999) Compromised glutamate transport in human glioma cells: reduction-mislocalization of sodium-dependent glutamate transporters and enhanced activity of cystine-glutamate exchange. J Neurosci 19:10767–10777
Ye ZC, Sontheimer H (1999) Glioma cells release excitotoxic concentrations of glutamate. Cancer Res 59:4383–4391
Nakada M, Okada Y, Yamashita J (2003) The role of matrix metalloproteinases in glioma invasion. Front Biosci 8:e261–e269
Bordey A, Sontheimer H (2000) Ion channel expression by astrocytes in situ: comparison of different CNS regions. Glia 30:27–38
Hajek I, Subbarao KV, Hertz L (1996) Acute and chronic effects of potassium and noradrenaline on Na+, K+-ATPase activity in cultured mouse neurons and astrocytes. Neurochem Int 28:335–342
Charles AC, Merrill JE, Dirksen ER, Sanderson MJ (1991) Intercellular signaling in glial cells: calcium waves and oscillations in response to mechanical stimulation and glutamate. Neuron 6:983–992
Shigetomi E, Bowser DN, Sofroniew MV, Khakh BS (2008) Two forms of astrocyte calcium excitability have distinct effects on NMDA receptor-mediated slow inward currents in pyramidal neurons. J Neurosci 28:6659–6663
Nedergaard M, Ransom B, Goldman SA (2003) New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci 26:523–530
Simard M, Nedergaard M (2004) The neurobiology of glia in the context of water and ion homeostasis. Neuroscience 129:877–896
Pasantes-Morales H, Cardin V, Tuz K (2000) Signaling events during swelling and regulatory volume decrease. Neurochem Res 25:1301–1314
Halassa MM, Fellin T, Haydon PG (2009) Tripartite synapses: roles for astrocytic purines in the control of synaptic physiology and behavior. Neuropharmacology 57:343–346
Smits A, Jin Z, Elsir T, Pedder H, Nister M, Alafuzoff I, Dimberg A, Edqvist PH, Ponten F, Aronica E, Birnir B (2012) GABA-A channel subunit expression in human glioma correlates with tumor histology and clinical outcome. PLoS One 7:e37041
Garzon-Muvdi T, Schiapparelli P, ap Rhys C, Guerrero-Cazares H, Smith C, Kim DH, Kone L, Farber H, Lee DY, An SS, Levchenko A, Quinones-Hinojosa A (2012) Regulation of brain tumor dispersal by NKCC1 through a novel role in focal adhesion regulation. PLoS Biol 10:e1001320
Arvind S, Arivazhagan A, Santosh V, Chandramouli BA (2012) Differential expression of a novel voltage gated potassium channel–Kv 1.5 in astrocytomas and its impact on prognosis in glioblastoma. Br J Neurosurg 26:16–20
Bielanska J, Hernandez-Losa J, Perez-Verdaguer M, Moline T, Somoza R, Ramon YCS, Condom E, Ferreres JC, Felipe A (2009) Voltage-dependent potassium channels Kv1.3 and Kv1.5 in human cancer. Curr Cancer Drug Targets 9:904–914
Basrai D, Kraft R, Bollensdorff C, Liebmann L, Benndorf K, Patt S (2002) BK channel blockers inhibit potassium-induced proliferation of human astrocytoma cells. NeuroReport 13:403–407
Chin LS, Park CC, Zitnay KM, Sinha M, DiPatri AJ Jr, Perillan P, Simard JM (1997) 4-Aminopyridine causes apoptosis and blocks an outward rectifier K+ channel in malignant astrocytoma cell lines. J Neurosci Res 48:122–127
Bordey A, Sontheimer H (1998) Electrophysiological properties of human astrocytic tumor cells In situ: enigma of spiking glial cells. J Neurophysiol 79:2782–2793
Kraft R, Basrai D, Benndorf K, Patt S (2001) Serum deprivation and NGF induce and modulate voltage-gated Na(+) currents in human astrocytoma cell lines. Glia 34:59–67
Bubien JK, Keeton DA, Fuller CM, Gillespie GY, Reddy AT, Mapstone TB, Benos DJ (1999) Malignant human gliomas express an amiloride-sensitive Na+ conductance. Am J Physiol 276:C1405–C1410
Schrey M, Codina C, Kraft R, Beetz C, Kalff R, Wolfl S, Patt S (2002) Molecular characterization of voltage-gated sodium channels in human gliomas. NeuroReport 13:2493–2498
Xing D, Wang J, Ou S, Wang Y, Qiu B, Ding D, Guo F, Gao Q (2014) Expression of neonatal Nav1.5 in human brain astrocytoma and its effect on proliferation, invasion and apoptosis of astrocytoma cells. Oncol Rep 31:2692–2700
Yang M, Kozminski DJ, Wold LA, Modak R, Calhoun JD, Isom LL, Brackenbury WJ (2012) Therapeutic potential for phenytoin: targeting Na(v)1.5 sodium channels to reduce migration and invasion in metastatic breast cancer. Breast Cancer Res Treat 134(2):603–615
Olsen ML, Schade S, Lyons SA, Amaral MD, Sontheimer H (2003) Expression of voltage-gated chloride channels in human glioma cells. J Neurosci 23:5572–5582
Lui VC, Lung SS, Pu JK, Hung KN, Leung GK (2010) Invasion of human glioma cells is regulated by multiple chloride channels including ClC-3. Anticancer Res 30:4515–4524
Su J, Xu Y, Zhou L, Yu HM, Kang JS, Liu N, Quan CS, Sun LK (2013) Suppression of chloride channel 3 expression facilitates sensitivity of human glioma U251 cells to cisplatin through concomitant inhibition of Akt and autophagy. Anat Rec 296:595–603
Algharabil J, Kintner DB, Wang Q, Begum G, Clark PA, Yang SS, Lin SH, Kahle KT, Kuo JS, Sun D (2012) Inhibition of Na(+)-K(+)-2Cl(−) cotransporter isoform 1 accelerates temozolomide-mediated apoptosis in glioblastoma cancer cells. Cell Physiol Biochem 30:33–48
Gagnon KB (2012) High-grade glioma motility reduced by genetic knockdown of KCC3. Cell Physiol Biochem 30:466–476
Olsen ML, Sontheimer H (2004) Mislocalization of Kir channels in malignant glia. Glia 46:63–73
MacFarlane SN, Sontheimer H (2000) Changes in ion channel expression accompany cell cycle progression of spinal cord astrocytes. Glia 30:39–48
Tan G, Sun SQ, Yuan DL (2008) Expression of Kir 4.1 in human astrocytic tumors: correlation with pathologic grade. Biochem Biophys Res Commun 367:743–747
Ransom CB, Sontheimer H (2001) BK channels in human glioma cells. J Neurophysiol 85:790–803
Tseng-Crank J, Foster CD, Krause JD, Mertz R, Godinot N, DiChiara TJ, Reinhart PH (1994) Cloning, expression, and distribution of functionally distinct Ca(2+)-activated K+ channel isoforms from human brain. Neuron 13:1315–1330
Ransom CB, Liu X, Sontheimer H (2002) BK channels in human glioma cells have enhanced calcium sensitivity. Glia 38:281–291
Liu X, Chang Y, Reinhart PH, Sontheimer H (2002) Cloning and characterization of glioma BK, a novel BK channel isoform highly expressed in human glioma cells. J Neurosci 22:1840–1849
Weaver AK, Liu X, Sontheimer H (2004) Role for calcium-activated potassium channels (BK) in growth control of human malignant glioma cells. J Neurosci Res 78:224–234
Wondergem R, Bartley JW (2009) Menthol increases human glioblastoma intracellular Ca2+, BK channel activity and cell migration. J Biomed Sci 16:90
Patt S, Preussat K, Beetz C, Kraft R, Schrey M, Kalff R, Schonherr K, Heinemann SH (2004) Expression of ether a go-go potassium channels in human gliomas. Neurosci Lett 368:249–253
Masi A, Becchetti A, Restano-Cassulini R, Polvani S, Hofmann G, Buccoliero AM, Paglierani M, Pollo B, Taddei GL, Gallina P, Di Lorenzo N, Franceschetti S, Wanke E, Arcangeli A (2005) hERG1 channels are overexpressed in glioblastoma multiforme and modulate VEGF secretion in glioblastoma cell lines. Br J Cancer 93:781–792
D’Alessandro G, Catalano M, Sciaccaluga M, Chece G, Cipriani R, Rosito M, Grimaldi A, Lauro C, Cantore G, Santoro A, Fioretti B, Franciolini F, Wulff H, Limatola C (2013) KCa3.1 channels are involved in the infiltrative behavior of glioblastoma in vivo. Cell Death Dis 4:e773
Turner KL, Honasoge A, Robert SM, McFerrin MM, Sontheimer H (2014) A proinvasive role for the Ca(2+) -activated K(+) channel KCa3.1 in malignant glioma. Glia 62:971–981
Bittner S, Budde T, Wiendl H, Meuth SG (2010) From the background to the spotlight: TASK channels in pathological conditions. Brain Pathol 20:999–1009
Patel AJ, Lazdunski M (2004) The 2P-domain K+ channels: role in apoptosis and tumorigenesis. Pflugers Arch 448:261–273
Meuth SG, Herrmann AM, Ip CW, Kanyshkova T, Bittner S, Weishaupt A, Budde T, Wiendl H (2008) The two-pore domain potassium channel TASK3 functionally impacts glioma cell death. J Neurooncol 87:263–270
Ishiuchi S, Yoshida Y, Sugawara K, Aihara M, Ohtani T, Watanabe T, Saito N, Tsuzuki K, Okado H, Miwa A, Nakazato Y, Ozawa S (2007) Ca2+-permeable AMPA receptors regulate growth of human glioblastoma via Akt activation. J Neurosci 27:7987–8001
Zhang Y, Zhang J, Jiang D, Zhang D, Qian Z, Liu C, Tao J (2012) Inhibition of T-type Ca(2)(+) channels by endostatin attenuates human glioblastoma cell proliferation and migration. Br J Pharmacol 166:1247–1260
Ding X, He Z, Zhou K, Cheng J, Yao H, Lu D, Cai R, Jin Y, Dong B, Xu Y, Wang Y (2010) Essential role of TRPC6 channels in G2/M phase transition and development of human glioma. J Natl Cancer Inst 102:1052–1068
Ross SB, Fuller CM, Bubien JK, Benos DJ (2007) Amiloride-sensitive Na+ channels contribute to regulatory volume increases in human glioma cells. Am J Physiol Cell Physiol 293(3):C1181–C1185
Joshi AD, Parsons DW, Velculescu VE, Riggins GJ (2011) Sodium ion channel mutations in glioblastoma patients correlate with shorter survival. Mol Cancer 10:17
Cuddapah VA, Turner KL, Seifert S, Sontheimer H (2013) Bradykinin-induced chemotaxis of human gliomas requires the activation of KCa3.1 and ClC-3. J Neurosci 33:1427–1440
Palani M, Arunkumar R, Janardhanam VAPD (2010) Biochemical and cytogenetic analysis of brain tissues in different grades of glioma patients. Ann Neurosci 17:120–125
Kislin KL, McDonough WS, Eschbacher JM, Armstrong BA, Berens ME (2009) NHERF-1: modulator of glioblastoma cell migration and invasion. Neoplasia 11:377–387
Zhu SJ, Wang KJ, Gan SW, Xu J, Xu SY, Sun SQ (2013) Expression of aquaporin8 in human astrocytomas: correlation with pathologic grade. Biochem Biophys Res Commun 440:168–172
El Hindy N, Bankfalvi A, Herring A, Adamzik M, Lambertz N, Zhu Y, Siffert W, Sure U, Sandalcioglu IE (2013) Correlation of aquaporin-1 water channel protein expression with tumor angiogenesis in human astrocytoma. Anticancer Res 33:609–613
Di Cristofori A, Carrabba G, Lanfranchi G, Menghetti C, Rampini P, Caroli M (2013) Continuous tamoxifen and dose-dense temozolomide in recurrent glioblastoma. Anticancer Res 33(8):3383–3389
Acknowledgments
The authors thank Ms. Heike Blum for illustration design and artwork.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflicts of interests.
Rights and permissions
About this article
Cite this article
Simon, O.J., Müntefering, T., Grauer, O.M. et al. The role of ion channels in malignant brain tumors. J Neurooncol 125, 225–235 (2015). https://doi.org/10.1007/s11060-015-1896-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11060-015-1896-9