Skip to main content

Advertisement

Log in

Phenytoin reduces 5-aminolevulinic acid-induced protoporphyrin IX accumulation in malignant glioma cells

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Epileptic seizures are among the presenting clinical signs of malignant glioma patients, frequently necessitating treatment with antiepileptic drugs (AEDs). The efficacy of 5-aminolevulinic acid (5-ALA)-based intraoperative fluorescence-guided surgery and photodynamic therapy (PDT) in glioblastoma multiforme (GBM) patients depends on the specific accumulation and total amount of intracellularly synthesized protoporphyrin IX (PpIX) in tumour cells. In this study, we investigated the effect of the AEDs phenytoin (PHY) and levetiracetam (LEVE) on 5-ALA-induced PpIX accumulation in two glioma cell lines (U373 MG and U-87 MG) and primary GBM cells isolated from a human biopsy. After treatment with PHY and LEVE for three days cells were incubated with 1 mM 5-ALA for 4 h and PpIX accumulation was determined by fluorescence measurement. We observed a decrease in PpIX synthesis of up to 55 ± 12 % in primary GBM cells after incubation with phenytoin. This reduction was dose-dependent for all tested cell lines and primary GBM cells. LEVE on the other hand did not alter PpIX concentration in GBM cells. PDT was performed in vitro by irradiating the GBM cells with light doses from 0.5 to 10 J cm−2 at 627 nm after AED and 5-ALA treatment. Although less PpIX accumulated in PHY-treated cells, efficacy of PDT was not affected. We assume that damage to the mitochondrial membrane by PHY inhibits PpIX synthesis in vitro, because we showed mitochondrial dysfunction as a result of reduced mitochondrial membrane potential in PHY-treated cells. No change in glutathione status was observed. To evaluate further the effect of PHY on PpIX fluorescence, and to establish its significance in clinical practice, animal and clinical studies are required, because the results presented here imply PHY may reduce intracellular accumulation of PpIX in patients with high-grade gliomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

5-ALA:

5-Aminolevulinic acid

AEDs:

Antiepileptic drugs

DMSO:

Dimethyl sulfoxide

FCS:

Fetal calf serum

GBM:

Glioblastoma multiforme

GSH:

Reduced glutathione

GSSG:

Oxidized glutathione

LEVE:

Levetiracetam

MMP:

Mitochondrial membrane potential

PDD:

Photodynamic diagnosis

PDT:

Photodynamic therapy

PHY:

Phenytoin

PpIX:

Protoporphyrin IX

RFU:

Relative fluorescence units

References

  1. Moots PL, Maciunas RJ, Eisert DR, Parker RA, Laporte K, Aboukhalil B (1995) The course of seizure disorders in patients with malignant gliomas. Arch Neurol 52(7):717–724

    Article  PubMed  CAS  Google Scholar 

  2. Nabavi A, Thurm H, Zountsas B, Pietsch T, Lanfermann H, Pichlmeier U, Mehdorn M (2009) Five-aminolevulinic acid for fluorescence-guided resection of recurrent malignant gliomas: a phase II study. Neurosurgery 65(6):1070–1076

    Article  PubMed  Google Scholar 

  3. Stander M, Dichgans J, Weller M (1998) Anticonvulsant drugs fail to modulate chemotherapy-induced cytotoxicity and growth inhibition of human malignant glioma cells. J Neurooncol 37(3):191–198

    Article  PubMed  CAS  Google Scholar 

  4. Rosati A, Buttolo L, Stefini R, Todeschini A, Cenzato M, Padovani A (2010) Efficacy and safety of levetiracetam in patients with glioma a clinical prospective study. Arch Neurol 67(3):343–346

    Article  PubMed  Google Scholar 

  5. Usery JB, Michael LM 2nd, Sills AK, Finch CK (2010) A prospective evaluation and literature review of levetiracetam use in patients with brain tumors and seizures. J Neurooncol 99(2):251–260

    Article  PubMed  Google Scholar 

  6. Santos NAG, Medina WSG, Martins NM, Mingatto FE, Curti C, Santos AC (2008) Aromatic antiepileptic drugs and mitochondrial toxicity: effects on mitochondria isolated from rat liver. Toxicol In Vitro 22(5):1143–1152

    Article  PubMed  CAS  Google Scholar 

  7. Wells PG, McCallum GP, Chen CS, Henderson JT, Lee CJJ, Perstin J, Preston TJ, Wiley MJ, Wong AW (2009) Oxidative stress in developmental origins of disease: teratogenesis, neurodevelopmental deficits, and cancer. Toxicol Sci 108(1):4–18

    Article  PubMed  CAS  Google Scholar 

  8. Meyer RP, Knoth R, Schiltz E, Volk B (2001) Possible function of astrocyte cytochrome p450 in control of xenobiotic phenytoin in the brain: in vitro studies on murine astrocyte primary cultures. Exp Neurol 167(2):376–384

    Article  PubMed  CAS  Google Scholar 

  9. Knupfer H, Stanitz D, Preiss R (2006) CYP2C9 polymorphisms in human tumors. Anticancer Res 26(1):299–305

    PubMed  Google Scholar 

  10. Olzowy B, Hundt CS, Stocker S, Bise K, Reulen HJ, Stummer W (2002) Photoirradiation therapy of experimental malignant glioma with 5-aminolevulinic acid. J Neurosurg 97(4):970–976

    Article  PubMed  CAS  Google Scholar 

  11. Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7(5):392–401

    Article  PubMed  CAS  Google Scholar 

  12. Ennis SR, Novotny A, Xiang J, Shakui P, Masada T, Stummer W, Smith DE, Keep RF (2003) Transport of 5-aminolevulinic acid between blood and brain. Brain Res 959(2):226–234

    Article  PubMed  CAS  Google Scholar 

  13. Novotny A, Xiang J, Stummer W, Teuscher NS, Smith DE, Keep RF (2000) Mechanisms of 5-aminolevulinic acid uptake at the choroid plexus. J Neurochem 75(1):321–328

    Article  PubMed  CAS  Google Scholar 

  14. Peng Q, Warloe T, Berg K, Moan J, Kongshaug M, Giercksky KE, Nesland JM (1997) 5-Aminolevulinic acid-based photodynamic therapy. Clinical research and future challenges. Cancer 79(12):2282–2308

    Article  PubMed  CAS  Google Scholar 

  15. Kondo M, Hirota N, Takaoka T, Kajiwara M (1993) Heme-biosynthetic enzyme activities and porphyrin accumulation in normal liver and hepatoma cell lines of rat. Cell Biol Toxicol 9(1):95–105

    Article  PubMed  CAS  Google Scholar 

  16. Chang YZ, Qian ZM, Du JR, Zhu L, Xu Y, Li LZ, Wang CY, Wang Q, Ge XH, Ho KP, Niu L, Ke Y (2007) Ceruloplasmin expression and its role in iron transport in C6 cells. Neurochem Int 50(5):726–733

    Article  PubMed  CAS  Google Scholar 

  17. Dysart JS, Singh G, Patterson MS (2005) Calculation of singlet oxygen dose from photosensitizer fluorescence and photobleaching during mTHPC photodynamic therapy of MLL cells. Photochem Photobiol 81(1):196–205

    Article  PubMed  CAS  Google Scholar 

  18. Liao H, Noguchi M, Maruyama T, Muragaki Y, Kobayashi E, Iseki H, Sakuma I (2012) An integrated diagnosis and therapeutic system using intra-operative 5-aminolevulinic-acid-induced fluorescence guided robotic laser ablation for precision neurosurgery. Med Image Anal 16(3):754–766

    Article  PubMed  Google Scholar 

  19. Utsuki S, Oka H, Sato S, Shimizu S, Suzuki S, Tanizaki Y, Kondo K, Miyajima Y, Fujii K (2007) Histological examination of false positive tissue resection using 5-aminolevulinic acid-induced fluorescence guidance. Neurol Med Chir (Tokyo) 47(5):210–213 (discussion 213–214)

    Article  Google Scholar 

  20. Hefti M, Holenstein F, Albert I, Looser H, Luginbuehl V (2011) Susceptibility to 5-aminolevulinic acid based photodynamic therapy in WHO I meningioma cells corresponds to ferrochelatase activity. Photochem Photobiol 87(1):235–241

    Article  PubMed  CAS  Google Scholar 

  21. Etminan N, Peters C, Ficnar J, Anlasik S, Bunemann E, Slotty PJ, Hanggi D, Steiger HJ, Sorg RV, Stummer W (2011) Modulation of migratory activity and invasiveness of human glioma spheroids following 5-aminolevulinic acid-based photodynamic treatment. J Neurosurg 115(2):281–288

    Article  PubMed  CAS  Google Scholar 

  22. Furre I, Møller M, Shahzidi S, Nesland J, Peng Q (2006) Involvement of both caspase-dependent and -independent pathways in apoptotic induction by hexaminolevulinate-mediated photodynamic therapy in human lymphoma cells. Apoptosis 11(11):2031–2042

    Article  PubMed  CAS  Google Scholar 

  23. Lowndes HE, Beiswanger CM, Philbert MA, Reuhl KR (1994) Substrates for neural metabolism of xenobiotics in adult and developing brain. Neurotoxicology 15(1):61–73

    PubMed  CAS  Google Scholar 

  24. Mariotti V, Melissari E, Amar S, Conte A, Belmaker RH, Agam G, Pellegrini S (2010) Effect of prolonged phenytoin administration on rat brain gene expression assessed by DNA microarrays. Exp Biol Med 235(3):300–310

    Article  CAS  Google Scholar 

  25. Gallagher EP, Sheehy KM (2001) Effects of phenytoin on glutathione status and oxidative stress biomarker gene mRNA levels in cultured precision human liver slices. Toxicol Sci 59(1):118–126

    Article  PubMed  CAS  Google Scholar 

  26. Nicolazzo JA, Steuten JA, Charman SA, Taylor N, Davies PJ, Petrou S (2010) Brain uptake of diazepam and phenytoin in a genetic animal model of absence epilepsy. Clin Exp Pharmacol Physiol 37(5–6):647–649

    Article  PubMed  CAS  Google Scholar 

  27. Ramsay RE, Hammond EJ, Perchalski RJ, Wilder BJ (1979) Brain uptake of phenytoin, phenobarbital, and diazepam. Arch Neurol 36(9):535–539

    Article  PubMed  CAS  Google Scholar 

  28. Sironi VA, Ravagnati L, Ettorre G, Cabrini GP, Marossero F (1982) Differences between the concentrations of antiepileptic drugs in normal and pathological human brain. Eur J Clin Pharmacol 22(5):447–449

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Development of the photodynamic device used in this study was financially supported by the Swiss Innovation Promotion Agency (CTI) and by Leica Microsystems (Schweiz) AG, Heerbrugg, Switzerland. The authors thank Professor Herbert Looser from the School of Engineering FHNW in Windisch for constructing the photodynamic device. We are much obliged to Medac GmbH, Wedel, Germany for providing Gliolan® (5-ALA). The authors thank Rebecca Wyer, Marino Angelozzi, and Jenny Pally-Eggenschwiler for their experimental support.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Hefti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hefti, M., Albert, I. & Luginbuehl, V. Phenytoin reduces 5-aminolevulinic acid-induced protoporphyrin IX accumulation in malignant glioma cells. J Neurooncol 108, 443–450 (2012). https://doi.org/10.1007/s11060-012-0857-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-012-0857-9

Keywords

Navigation