Skip to main content
Log in

Non-invasive detection of 2-hydroxyglutarate and other metabolites in IDH1 mutant glioma patients using magnetic resonance spectroscopy

  • Clinical Study – Patient Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Mutations of the isocitrate dehydrogenase 1 and 2 genes (IDH1 and IDH2) are commonly found in primary brain cancers. We previously reported that a novel enzymatic activity of these mutations results in the production of the putative oncometabolite, R(−)-2-hydroxyglutarate (2-HG). Here we investigated the ability of magnetic resonance spectroscopy (MRS) to detect 2-HG production in order to non-invasively identify patients with IDH1 mutant brain tumors. Patients with intrinsic glial brain tumors (n = 27) underwent structural and spectroscopic magnetic resonance imaging prior to surgery. 2-HG levels from MRS data were quantified using LC-Model software, based upon a simulated spectrum obtained from a GAMMA library added to the existing prior knowledge database. The resected tumors were then analyzed for IDH1 mutational status by genomic DNA sequencing, Ki-67 proliferation index by immunohistochemistry, and concentrations of 2-HG and other metabolites by liquid chromatography–mass spectrometry (LC–MS). MRS detected elevated 2-HG levels in gliomas with IDH1 mutations compared to those with wild-type IDH1 (P = 0.003). The 2-HG levels measured in vivo with MRS were significantly correlated with those measured ex vivo from the corresponding tumor samples using LC–MS (r 2 = 0.56; P = 0.0001). Compared with wild-type tumors, those with IDH1 mutations had elevated choline (P = 0.01) and decreased glutathione (P = 0.03) on MRS. Among the IDH1 mutated gliomas, quantitative 2-HG values were correlated with the Ki-67 proliferation index of the tumors (r 2 = 0.59; P = 0.026). In conclusion, water-suppressed proton (1H) MRS provides a non-invasive measure of 2-HG in gliomas, and may serve as a potential biomarker for patients with IDH1 mutant brain tumors. In addition to 2-HG, alterations in several other metabolites measured by MRS correlate with IDH1 mutation status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Balss J, Meyer J, Mueller W, Korshunov A, Hartmann C, von Deimling A (2008) Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol 116(6):597–602

    Article  PubMed  CAS  Google Scholar 

  2. Bleeker FE, Lamba S, Leenstra S, Troost D, Hulsebos T, Vandertop WP et al (2009) IDH1 mutations at residue p.R132 (IDH1(R132)) occur frequently in high-grade gliomas but not in other solid tumors. Hum Mutat 30(1):7–11

    Article  PubMed  CAS  Google Scholar 

  3. De Carli E, Wang X, Puget S (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360(21):2248 author reply 9

    Article  PubMed  Google Scholar 

  4. Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321(5897):1807–1812

    Article  PubMed  CAS  Google Scholar 

  5. Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360(8):765–773

    Article  PubMed  CAS  Google Scholar 

  6. Watanabe T, Nobusawa S, Kleihues P, Ohgaki H (2009) IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. Am J Pathol 174(4):1149–1153

    Article  PubMed  CAS  Google Scholar 

  7. Ducray F, Marie Y, Sanson M (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360(21):2248 author reply 9

    Article  PubMed  CAS  Google Scholar 

  8. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1):98–110

    Article  PubMed  CAS  Google Scholar 

  9. Dubbink HJ, Taal W, van Marion R, Kros JM, van Heuvel I, Bromberg JE et al (2009) IDH1 mutations in low-grade astrocytomas predict survival but not response to temozolomide. Neurology 73(21):1792–1795

    Article  PubMed  CAS  Google Scholar 

  10. Hartmann C, Meyer J, Balss J, Capper D, Mueller W, Christians A et al (2009) Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1, 010 diffuse gliomas. Acta Neuropathol 118(4):469–474

    Article  PubMed  Google Scholar 

  11. Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM et al (2009) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462(7274):739–744

    Article  PubMed  CAS  Google Scholar 

  12. Aghili M, Zahedi F, Rafiee E (2009) Hydroxyglutaric aciduria and malignant brain tumor: a case report and literature review. J Neurooncol 91(2):233–236

    Article  PubMed  Google Scholar 

  13. Bottomley PA (1987) Spatial localization in NMR spectroscopy in vivo. Ann N Y Acad Sci 508:333–348

    Article  PubMed  CAS  Google Scholar 

  14. Ogg RJ, Kingsley PB, Taylor JS (1994) WET, a T1- and B1-insensitive water-suppression method for in vivo localized 1H NMR spectroscopy. J Magn Reson B 104(1):1–10

    Article  PubMed  CAS  Google Scholar 

  15. Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30(6):672–679

    Article  PubMed  CAS  Google Scholar 

  16. Smith SA, Levante TO, Meier BH, Ernst RR (1994) Computer simulations in magnetic resonance.An object oriented programming approach. J Magn Reson A106:75–105

    Google Scholar 

  17. Helms G (2008) The principles of quantification applied to in vivo proton MR spectroscopy. Eur J Radiol 67(2):218–229

    Article  PubMed  Google Scholar 

  18. Cavassila S, Deval S, Huegen C, van Ormondt D, Graveron-Demilly D (2001) Cramer-Rao bounds: an evaluation tool for quantitation. NMR Biomed 14(4):278–283

    Article  PubMed  CAS  Google Scholar 

  19. Reitman ZJ, Jin G, Karoly ED, Spasojevic I, Yang J, Kinzler KW et al (2011) Profiling the effects of isocitrate dehydrogenase 1 and 2 mutations on the cellular metabolome. Proc Natl Acad Sci U S A 108(8):3270–3275

    Article  PubMed  CAS  Google Scholar 

  20. Jin G, Reitman ZJ, Spasojevic I, Batinic-Haberle I, Yang J, Schmidt-Kittler O et al (2011) 2-Hydroxyglutarate production, but not dominant negative function, is conferred by glioma-derived NADP-dependent isocitrate dehydrogenase mutations. PLoS One 6(2):e16812

    Article  PubMed  CAS  Google Scholar 

  21. Chou WC, Hou HA, Chen CY, Tang JL, Yao M, Tsay W et al (2010) Distinct clinical and biologic characteristics in adult acute myeloid leukemia bearing the isocitrate dehydrogenase 1 mutation. Blood 115(14):2749–2754

    Article  PubMed  CAS  Google Scholar 

  22. Gross S, Cairns RA, Minden MD, Driggers EM, Bittinger MA, Jang HG et al (2010) Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations. J Exp Med 207(2):339–344

    Article  PubMed  CAS  Google Scholar 

  23. Ward PS, Patel J, Wise DR, Abdel-Wahab O, Bennett BD, Coller HA et al (2010) The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17(3):225–234

    Article  PubMed  CAS  Google Scholar 

  24. Martinez-Bisbal MC, Celda B (2009) Proton magnetic resonance spectroscopy imaging in the study of human brain cancer. Q J Nucl Med Mol Imaging 53(6):618–630

    PubMed  CAS  Google Scholar 

  25. Tedeschi G, Lundbom N, Raman R, Bonavita S, Duyn JH, Alger JR et al (1997) Increased choline signal coinciding with malignant degeneration of cerebral gliomas: a serial proton magnetic resonance spectroscopy imaging study. J Neurosurg 87(4):516–524

    Article  PubMed  CAS  Google Scholar 

  26. Dowling C, Bollen AW, Noworolski SM, McDermott MW, Barbaro NM, Day MR et al (2001) Preoperative proton MR spectroscopic imaging of brain tumors: correlation with histopathologic analysis of resection specimens. AJNR Am J Neuroradiol 22(4):604–612

    PubMed  CAS  Google Scholar 

  27. Labussiere M, Wang XW, Idbaih A, Ducray F, Sanson M (2010) Prognostic markers in gliomas. Future oncology (London, England) 6(5):733–739

    Article  CAS  Google Scholar 

  28. Toedt G, Barbus S, Wolter M, Felsberg J, Tews B, Blond F et al (2011) Molecular signatures classify astrocytic gliomas by IDH1 mutation status. Int J Cancer 128(5):1095–1103

    Article  PubMed  CAS  Google Scholar 

  29. van den Bent MJ, Dubbink HJ, Marie Y, Brandes AA, Taphoorn MJ, Wesseling P et al (2010) IDH1 and IDH2 mutations are prognostic but not predictive for outcome in anaplastic oligodendroglial tumors: a report of the European Organization for Research and Treatment of Cancer Brain Tumor Group. Clin Cancer Res 16(5):1597–1604

    Article  PubMed  Google Scholar 

  30. Dang L, Jin S, Su SM (2010) IDH mutations in glioma and acute myeloid leukemia. Trends Mol Med 16(9):387–397

    Article  PubMed  CAS  Google Scholar 

  31. Wiseman H, Halliwell B (1996) Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J 313(Pt 1):17–29

    PubMed  CAS  Google Scholar 

  32. Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim S-H et al (2011) Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of [alpha]-ketoglutarate-dependent dioxygenases. Cancer Cell 19(1):17–30

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported in part by grants from the National Cancer Institute (K01-CA111402 and R01-CA123396 to Dr. Prins; R01-CA112358 and R01-CA121131 to Dr. Liau), and research grants from the Neidorf Family Foundation, the Phillip R. Jonsson & Kenneth A. Jonsson Foundations, the Brad Kaminsky Foundation, and the Accelerate Brain Cancer Cure Foundation. Scientific support of Mr. Brian Burns is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda M. Liau.

Additional information

Whitney B. Pope, Robert M. Prins, and M. Albert Thomas contributed equally to this article.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pope, W.B., Prins, R.M., Albert Thomas, M. et al. Non-invasive detection of 2-hydroxyglutarate and other metabolites in IDH1 mutant glioma patients using magnetic resonance spectroscopy. J Neurooncol 107, 197–205 (2012). https://doi.org/10.1007/s11060-011-0737-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-011-0737-8

Keywords

Navigation