Skip to main content

Advertisement

Log in

p53 regulates LIF expression in human medulloblastoma cells

  • Laboratory Investigation - Human/Animal Tissue
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Medulloblastomas are highly malignant, poorly differentiated childhood tumours arising in the cerebellum. These tumors rarely lose TP53, which is the most commonly mutated gene in cancer. Recent work has shown that the basal level of p53 plays an important role in maternal reproduction by maintaining the expression of LIF in the uterus. Since LIF can maintain the undifferentiated state of stem cells we set out to ask if p53 regulates LIF in the human medulloblastoma cell lines DAOY and D283MED. We also used p53−/− and p53+/+ isogenic HCT116 colorectal carcinoma cell lines, already reported to exhibit p53-dependent expression of the LIF D transcript, to establish the extent of p53-dependency for LIF M and T alternative transcripts. Whilst all three known, full-length alternative transcripts are more abundant in p53+/+ cells, the alternative LIF M and T transcripts appear particularly sensitive to p53. In the p53 wild-type medulloblastoma cell line D283MED chromatin immunoprecipitation experiments showed p53 binding to the LIF gene. The mutant p53 expressed in line DAOY did not bind to this region or to the p21WAF1 p53 binding site. RNA interference against either WIP1 or SIRT1 stabilized p53 and enhanced the transcription of LIF in D283MED cells. Interestingly, siRNA against WIP1 or SIRT1 also induced increased apoptosis in the medulloblastoma line D283MED and, over a longer time period, in DAOY cells. We speculate that suppression of p53 function by combined WIP1-mediated dephosphorylation and SIRT1 deacetylation enables medulloblastoma cell survival but p53-dependent and independent apoptotic pathways remain intact. Thus small molecule inhibitors of SIRT1 may be useful in treatment of medulloblastoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

LIF:

Leukemia inhibitory factor

ChIP:

Chromatin immunoprecipitation

qRT–PCR:

Quantitative real time PCR

STAT3:

Signal transducer and activator of transcription 3

SIRT1:

Human Sirtuin 1 member of the silent information regulator 2 (Sir2) gene family

WIP1/PPM1D:

Wild type p53-induced phosphatase 1/protein phosphatase magnesium-dependent 1 delta

NAD+:

Nicotinamide adenine dinucleotide

RNAi:

RNA interference

References

  1. Gilbertson RJ (2004) Medulloblastoma: signalling a change in treatment. Lancet Oncol 5:209–218

    Article  PubMed  Google Scholar 

  2. Liu J, Gang Y, Guo L, Li H (1999) Expression of leukemia-inhibitory factor as an autocrinal growth factor in human medulloblastomas. J Cancer Res Clin Oncol 125:475–480

    Article  PubMed  CAS  Google Scholar 

  3. Williams RL, Hilton DJ, Pease S, Willson TA, Stewart CL, Gearing DP, Wagner EF, Metcalf D, Nicola NA, Gough NM (1988) Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 336:684–687

    Article  PubMed  CAS  Google Scholar 

  4. Bauer S, Patterson PH (2006) Leukemia inhibitory factor promotes neural stem cell self-renewal in the adult brain. J Neurosci 26:12089–12099

    Article  PubMed  CAS  Google Scholar 

  5. Hambardzumyan D, Becher OJ, Rosenblum MK, Pandolfi PP, Manova-Todorova K, Holland EC (2008) PI3K pathway regulates survival of cancer stem cells residing in the perivascular niche following radiation in medulloblastoma in vivo. Genes Dev 22:436–448

    Article  PubMed  CAS  Google Scholar 

  6. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432:396–401

    Article  PubMed  CAS  Google Scholar 

  7. Nichols J, Davidson D, Taga T, Yoshida K, Chambers I, Smith A (1996) Complementary tissue-specific expression of LIF and LIF-receptor RNAs in early mouse embryogenesis. Mech Dev 57:123–131

    Article  PubMed  CAS  Google Scholar 

  8. Hu W, Feng Z, Teresky AK, Levine AJ (2007) p53 regulates maternal reproduction through LIF. Nature 450:721–724

    Article  PubMed  CAS  Google Scholar 

  9. Auernhammer CJ, Melmed S (2000) Leukemia-inhibitory factor—neuroimmune modulator of endocrine function. Endocr Rev 21:313–345

    Article  PubMed  CAS  Google Scholar 

  10. Yang F, Van Meter TE, Buettner R, Hedvat M, Liang W, Kowolik CM, Mepani N, Mirosevich J, Nam S, Chen MY, Tye G, Kirschbaum M, Jove R (2008) Sorafenib inhibits signal transducer and activator of transcription 3 signaling associated with growth arrest and apoptosis of medulloblastomas. Mol Cancer Ther 7:3519–3526

    Article  PubMed  CAS  Google Scholar 

  11. Haines BP, Voyle RB, Pelton TA, Forrest R, Rathjen PD (1999) Complex conserved organization of the mammalian leukemia inhibitory factor gene: regulated expression of intracellular and extracellular cytokines. J Immunol 162:4637–4646

    PubMed  CAS  Google Scholar 

  12. Rathjen PD, Toth S, Willis A, Heath JK, Smith AG (1990) Differentiation inhibiting activity is produced in matrix-associated and diffusible forms that are generated by alternate promoter usage. Cell 62:1105–1114

    Article  PubMed  CAS  Google Scholar 

  13. Haines BP, Voyle RB, Rathjen PD (2000) Intracellular and extracellular leukaemia inhibitory factor proteins have different cellular activities that are mediated by distinct protein motifs. Mol Biol Cell 11:1369–1383

    PubMed  CAS  Google Scholar 

  14. Adesina AM, Nalbantoglu J, Cavanee WK (1994) p53 gene mutation and mdm2 amplification are uncommon in medulloblastoma. Cancer Res 54:5649–5651

    PubMed  CAS  Google Scholar 

  15. Castellino RC, De Bartoli M, Lu X, Moon S-H, Nguyen T-A, Shepard MA, Rao PH, Donehower LA (2008) Medulloblastomas overexpress the p53-inactivating oncogene WIP1/PPM1D. J Neurooncol 86:245–256

    Article  PubMed  CAS  Google Scholar 

  16. Lu X, Nguyen T-A, Moon S-H, Darlington Y, Sommer M, Donehower LA (2008) The type 2C phosphatase WIP1: an oncogenic regulator of tumor suppressor and DNA damage response pathways. Cancer Metastasis Rev 27:123–135

    Article  PubMed  CAS  Google Scholar 

  17. Brooks CL, Gu W (2003) Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr Opin Cell Biol 15:164–171

    Article  PubMed  CAS  Google Scholar 

  18. Parssinen J, Alarmo EL, Karhu R, Kallioniemi A (2008) PPM1D silencing by RNA interference inhibits proliferation and induces apoptosis in breast cancer cells with wild-type p53. Cancer Genet Cytogenet 182:33–39

    Article  PubMed  CAS  Google Scholar 

  19. Michael D, Oren M (1992) The p53 and Mdm2 families in cancer. Curr Opin Genet Dev 12:53–59

    Article  Google Scholar 

  20. Luo J, Nikolaev AY, Imai S, Chen D, Su F, Shiloh A, Guarente L, Gu W (2001) Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 107:137–148

    Article  PubMed  CAS  Google Scholar 

  21. Vaziri H, Dessain SK, Ng Eaton E, Imai S, Frye RA, Pandita TK, Guarente L, Weinberg RA (2001) hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107:149–159

    Article  PubMed  CAS  Google Scholar 

  22. Langley E, Pearson M, Faretta M, Bauer UM, Frye RA, Minucci S, Pelicci PG, Kouzarides T (2002) Human SIR2 deacetylates p53 and antagonises PML/p53-induced cellular senescence. EMBO J 21:2383–2396

    Article  PubMed  CAS  Google Scholar 

  23. Ford J, Jiang M, Milner J (2005) Cancer-specific functions of SIRT1 enable human epithelial cancer cell growth and survival. Cancer Res 65:10457–10463

    Article  PubMed  CAS  Google Scholar 

  24. Zhang Q, Wang S-Y, Fleuriel C, Leprince D, Rocheleau JV, Piston DW, Goodman RH (2007) Metabolic regulation of SIRT1 transcription via a HIC1:CtBPcorepressor complex. Proc Natl Acad Sci (USA) 104:829–833

    Google Scholar 

  25. Lindsey JC, Lusher ME, Anderton JA, Bailey S, Gilbertson RJ, Pearson ADJ, Ellison DW, Clifford SC (2004) Identification of tumour-specific epigenetic events in medulloblastoma development by hypermethylation profiling. Carcinogenesis 25:661–668

    Article  PubMed  CAS  Google Scholar 

  26. Saylors RLI, Sidransky D, Friedman HS, Bigner SH, Bigner DD, Vogelstein B, Brodeur GM (1991) Infrequent p53 gene mutations in medulloblastoma. Cancer Res 51:4721–4723

    PubMed  Google Scholar 

  27. Bunz F, Hwang PM, Torrance C, Waldman T, Zhang Y, Dillehay L, Williams J, Lengauer C, Kinzler KW, Vogelstein B (1999) Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J Clin Investig 104:263–269

    Article  PubMed  CAS  Google Scholar 

  28. Fujimoto H, Onishi N, Kato N, Takekawa M, Xu X, Kosugi A, Kondo T, Imamura M, Oishi I, Yoda A, Minami Y (2006) Regulation of the antioncogenic Chk2 kinase b the oncogenic Wip1 phosphatase. Cell Death Differ 13:1170–1180

    Article  PubMed  CAS  Google Scholar 

  29. Castellino RC, De Bortoli M, Lin LL, Skapura DG, Rajan JA, Adesina AM, Perlaky L, Irwin MS, Kim JY (2007) Overexpressed TP73 induces apoptosis in medulloblastoma. BMC Cancer 7:127–142

    Article  PubMed  CAS  Google Scholar 

  30. Briggs KJ, Corcoran-Schwartz IM, Zhang W, Harcke T, Devereux WL, Baylin SB, Eberhart CG, Watkins DN (2008) Cooperation between the Hic1 and Ptch1 tumor suppressors in medulloblastoma. Genes Dev 22:770–785

    Article  PubMed  CAS  Google Scholar 

  31. Bulavin DV, Phillips C, Nannenga B, Timofeev O, Donehower LA, Anderson CW, Appella E, Fornace AJ Jr (2004) Inactivation of the Wip1 phosphatase inhibits mammary tumorigenesis through p38 MAPK-mediated activation of the p16(Ink4a)-p19(Arf) pathway. Nature Genet 36(4):319–320

    Article  CAS  Google Scholar 

  32. Alcain FJ, Villalba JM (2009) Sirtuin inhibitors. Expert Opin Ther Pat 19(3):283–294

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr Bert Vogelstein for the HCT116 p53 −/− and +/+ cell lines. We thank the members of the YCR p53 Research Unit for helpful discussions. This work was supported by Yorkshire Cancer Research Fund core funding to JM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jo Milner.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 35 kb)

Supplementary Fig. 1

The LIF antibody shows a lower signal in LIF siRNA-treated HepG2 cells.A band of approximately 40 kDa is seen using antibodies against LIF; this signal is reducedmarkedly in cells treated with LIF D siRNA compared with a control siRNA transfection (laminA/C), transfection using the reagent only “oligofectamine” and untreated cells. An actin blot isincluded as a loading control (PDF 52 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baxter, E.W., Milner, J. p53 regulates LIF expression in human medulloblastoma cells. J Neurooncol 97, 373–382 (2010). https://doi.org/10.1007/s11060-009-0043-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-009-0043-x

Keywords

Navigation