Abstract
Matrix Metalloproteinases (MMPs) play a crucial role in breast cancer metastasis. We examined the mRNA and protein expression of several MMPs in brain- and bone-seeking clones of MDA-MB-231 breast cancer cells, their transcriptional regulation and their functional role in the metastatic process. MMP mRNA expression was examined using real-time reverse transcription polymerase chain reaction. Protein expression was examined using enzyme linked immunosorbent essay (ELISA). The inducibility of mRNA and protein expression was tested with TPA (phorbol 12-myristate 13-acetate; 50 µM); epidermal growth factor and transforming growth factor β (20 ng/ml both). Migration and invasion assays were performed with the QCM™ 96-Well Migration/Invasion Assay (8 µm; Chemicon) over 24 h with or without specific MMPs inhibitors (MMP Inhibitor I Mix (5 µM); MMP-2/MMP-9 Inhibitor III (50 µM); EMD Biosciences). We found significantly higher mRNA expression of MMP-1 and -9 in brain-seeking 231-clones in comparison to -bone and -parental cells. In contrast, the mRNA expression of MMP-3 and -14 was comparable in all cells lines examined and MMP-13 expression was lower in both selective metastatic lines. MMP-2 and -8 were not expressed. ELISA revealed a higher amount of total as well as active MMP-1 and -9 in brain-seeking cells. TPA stimulation showed that MMP-1 and -9 transcription was inducible on the mRNA and protein level in 231-parental but not in 231-brain or -bone. 231-brain showed the highest migration and invasive capacity which could be decreased by the application of MMP-1 and/or MMP-9 inhibitor. Our results indicate functional importance of MMP-1 and -9 overexpression in brain metastasis in an in vitro model.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Arbit E, Wronski M (1996) Clinical decision making in brain metastases. Neurosurg Clin N Am 7:447–457
Schouten LJ, Rutten J, Huveneers HA, Twijnstra A (2002) Incidence of brain metastases in a cohort of patients with carcinoma of the breast, colon, kidney, and lung and melanoma. Cancer 94:2698–2707
Sloan EK, Anderson RL (2002) Genes involved in breast cancer metastasis to bone. Cell Mol Life Sci 59:1491–1502
Stark AM, Tscheslog H, Buhl R, Held-Feindt J, Mehdorn HM (2005) Surgical treatment for brain metastases: prognostic factors and survival in 177 patients. Neurosurg Rev 28:115–119
Puduvalli VK (2001) Brain metastases: biology and the role of the brain microenvironment. Curr Oncol Rep 3:467–475
Weber GF, Ashkar S (2000) Molecular mechanisms of tumor dissemination in primary and metastatic brain cancers. Brain Res Bull 53:421–424
Yoneda T, Williams PJ, Hiraga T, Niewolna M, Nishimura R (2001) A bone-seeking clone exhibits different biological properties from the MDA-MB-231 parental human breast cancer cells and a brain-seeking clone in vivo and in vitro. J Bone Mineral Res 16:1486–1495
Jackson JG, Zhang X, Yoneda T, Yee D (2001) Regulation of breast cancer cell motility by insulin like receptor substrate-2 (IRS-2) in metastatic variants of human breast cancer cell lines. Oncogene 20:7318–7325
Myoui A, Nishimura R, Williams PJ, Hiraga T, Tamura D, Michigami T, Mundy GR, Yoneda T (2003) C-SRC tyrosine kinase activity is associated with tumor colonization in bone and lung in an animal model of human breast cancer metastasis. Cancer Res 63:5028–5033
Weil RJ, Palmieri DC, Bronder JL, Stark AM, Steeg PS (2005) Breast cancer metastasis to the central nervous system. Am J Pathol 167:913–920
Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases, structure, function and biochemistry. Circ Res 92:827–839
Woessner JF (1998) The matrix metalloproteinase family. In: Parks WC, Mecham RP (eds) Matrix metalloproteinases. San Diego, California, Academic Press, pp 1–13
Hamacher S, Matern S, Roeb E (2004) Extracellular matrix – from basic research to clinical significance. An overview with special consideration of matrix metalloproteinases. Dtsch Med Wochenschr 129:1976–1980
Brinckerhoff CE, Rutter JL, Benbow U (2000) Interstitial collagenases as markers of tumor progression. Clin Cancer Res 6:4823–4830
Morgan H, Hill PA (2005) Human breast cancer cell-mediated bone collagen degradation requires plasminogen activation and matrix metalloproteinase activity. Cancer Cell Int 5:1
Wiesen JF, Werb Z (1996) The role of stromelysin-1 in stromal–epithelial interactions and cancer. Enzyme Protein 49:174–181
Rio MC, Lefebvre O, Santavicca M, Noel A, Chenard MP, Anglard P, Byrne JA, Okada A, Regnier CH, Masson R, Bellocq JP, Basset P (1996) Stromelysin-3 in the biology of the normal and neoplastic mammary gland. J Mam Gland Neoplasia 1:231–240
Lochter A, Srebrow A, Sympson CJ, Terracio N, Werb Z, Bissell MJ (1997) Misregulation of stromelysin-1 expression in mouse mammary tumor cells accompanies acquisition of stromelysin-1-dependent invasive properties. J Biol Chem 272:5007–5015
Davies B, Miles DW, Happerfield LC, Naylor MS, Bobrow LG, Rubens RD, Balkwill FR (1993) Activity of type IV collagenases in benign and malignant breast disease. Br J Cancer 67:1126–1131
Duffy MJ, Maguire TM, Hill A, McDermott E, O’Higgins N (2000) Metalloproteinases: role in breast carcinogenesis, invasion and metastasis. Breast Cancer Res 2:252–257
Feindt J, Becker I, Blömer U, Hugo HH, Mehdorn HM, Krisch B, Mentlein R (1995) Expression of somatostatin receptor subtypes in cultured astrocytes and gliomas. J Neurochem 65:1997–2005
Baker AH, Edwards DR, Murphy G (2002) Metalloproteinase inhibitors: biological actions and therapeutic opportunities. J Cell Sci 115:3719–3727
Mendes O, Kim HT, Stoica G (2005) Expression of MMP2, MMP9 and MMP3 in breast cancer brain metastasis in a rat model. Clin Exp Metastasis 22:237–246
Bachmeier BE, Nerlich AG, Lichtinghagen R, Sommerhofr CP (2001) Matrix metalloproteinases (MMPs) in breast cancer cell lines of different tumorigenicity. Anticancer Res 21:2821–2828
Barrett JM, Puglia MA, Singh G, Tozer RG (2002) Expression of Ets-related transcription factors and matrix metalloproteinase genes in human breast cancer cells. Breast Cancer Res Treat 72:227–232
Behrens P, Rothe M, Wellmann A, Krischler J, Wernert T (2001) The Ets-1 transcription factor is up-regulated together with MMP1 and MMP9 in the stroma of pre-invasive breast cancer. J Pathol 194:43–50
Mackay AR, Ballin M, Pelina MD, Farina AR, Nason AM, Hartzler JL, Thorgeirsson UP (1992) Effect of phorbol ester and cytokines on matrix metalloproteinase and tissue inhibitor of metalloproteinase expression in tumor and normal cell lines. Invasion Metastasis 12:168–184
Wang TN, Albo D, Tuszynski GP (2002) Fibroblasts promote breast cancer cell invasion by upregulating tumor matrix metalloproteinase-9 production. Surgery 132:220–225
Duivenvoorden WC, Hirte HW, Singh G (1999) Transforming growth factor beta1 acts as an inducer of matrix metalloproteinase expression and activity in human bone-metastasizing cells. Clin Exp Metastasis 17:27–34
Gadher SJ, Schmid TM, Heck LW, Woolley DE (1989) Cleavage of collagen type X by human synovial collagenase and neutrophil elastase. Matrix 9:109–115
Goldring MB (1993) Degradation of articular cartilage in culture: regulatory factors. In: Woessner JF, Howell DS (eds) Joint cartilage degradation. Marcel Dekker, New York, pp 281–345
Vincenti MP, Coon CI, White LA, Barchowsky A, Brinckerhoff CE (1996) src-Related tyrosine kinases regulate transcriptional activation of the intestinal collagenase gene, MMP-1, in interleukin-1 stimulated synovial fibroblasts. Arthritis Rheum 39:574–582
Nutt JE, Lunec J (1996) Induction of metalloproteinase (MMP1) expression by epidermal growth factor (EGF) receptor stimulation and serum deprivation in human breast tumor cells. Eur J Cancer 32:2127–2135
Kousidou OC, Roussidis AE, Theocharis AD, Karamanos NK (2004) Expression of MMPs and TIMPs genes in human breast cancer epithelial cells depends on cell culture conditions and is associated with their invasive potential. Anticancer Res 24(6):4025–4030
Poola I, DeWitty RL, Marshalleck JJ, Bhatnagar R, Abraham J, Leffall LD (2005) Identification of MMP-1 as a piútative breast cancer predictive marker by global gene expression analysis. Nat Med 11:481–483
Bachmeier BE, Rohrbach H, De Waal J, Jochum M, Nerlich AG (2005) Enhanced expression and activation of major matrix metalloproteinases in distinct topographic areas of invasive breast carcinomas. Int J Oncol 26:1203–1207
Proost P, Van Damme J, Opdenakker G (1993) Leukocyte gelatinase B cleavage releases encephalitogens from human myelin basic protein. Biochem Biophys Res Commun 192:1175–1181
Witty JP, Foster SA, Stricklin GP, Matrisian LM, Stern PH (1996) Parathyroid hormone-induced resorption in fetal rat limb bones with production of the metalloproteinases collagenase and gelatinase B. J Bone Miner Res 11:72–78
Kjeldsen L, Bjerrum OW, Askaa J, Borregaard N (1992) Subcellular localization and release of human neutrophil gelatinase, confirming the existence of separate gelatinase-containing granules. Biochem J 287:603–610
Welgus HG, Campbell EJ, Cury JD, Eisen AZ, Senior RM, Wilhelm SM, Goldberg GI (1991) Neutral metalloproteinases produced by human mononuclear phagocytes. Enzyme profile, regulation, and expression during cellular development. J Clin Invest 86:1496–1502
Rosenberg GA (1995) Matrix metalloproteinases in brain injury. J Neurotrauma 12:833–842
Arnold SM, Young AB, Munn RK, Patchell RA, Nanayakkara N, Markesbery WR (1999) Expression of p53, bcl-2, E-cadherin, matrix metalloproteinase-9, and tissue inhibitor of metalloproteinases-1 in paired primary tumors and brain metastasis. Clin Cancer Res 5:4028–4033
Rahko E, Jukkola A, Melkko J, Paavo P, Bloigu R, Talvensaari-Mattila A, Turpeenniemi-Hujanen T (2004) Matrix metalloproteinase-9 (MMP-9) immunoreactive protein has modest prognostic value in locally advanced breast carcinoma patients treated with an adjuvant antiestrogen therapy. Anticancer Res 24:4247–4253
Barsky SH, Togo S, Garbisa S, Liotta LA (1983) Type IV collagenase immunoreactivity in invasive breast carcinoma. Lancet 5:296–297
Przybylowska K, Kluczna A, Zadrozny M, Krawczyk T, Kulig A, Rykala J, Kolacinska A, Morawiec Z, Drzewoski J, Blasiak J (2005) Polymorphisms of the promoter regions of matrix metalloproteinases genes MMP-1 and MMP-9 in breast cancer. Breast Cancer Res 95:65–72
Balduyck M, Zerimech F, Gouyer V, Lemaire R, Hemon B, Grard G, Thiebaut C, Lemaire V, Dacquembronne E, Duhem T, Lebrun A, Dejonghe MJ, Huet G (2000) Specific expression of matrix metalloproteinases 1, 3, 9 and 13 associated with invasiveness of breast cancer cells in vitro. Clin Exp Metastasis 18:171–178
Saad S, Bendall LJ, James A, Gottlieb DJ, Bradstock KF (2000) Induction of matrix metalloproteinases MMP-1 and MMP-2 by coculture of breast cancer cells and bone marrow fibroblasts. Breast Cancer Res Treat 63:105–115
Acknowledgements
We thank Brigitte Rehmke, Bärbel Hufnagel and Jörg Krause for their expert technical assistance. This work was supported by the “Hensel-Foundation”.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Stark, A.M., Anuszkiewicz, B., Mentlein, R. et al. Differential Expression of Matrix Metalloproteinases in Brain- and Bone-Seeking Clones of Metastatic MDA-MB-231 Breast Cancer Cells. J Neurooncol 81, 39–48 (2007). https://doi.org/10.1007/s11060-006-9207-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11060-006-9207-0