Skip to main content

Advertisement

Log in

Novel drug delivery system using thermoreversible gelation polymer for malignant glioma

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Summary

Many approaches to local tumor treatment have been reported and their efficacy demonstrated in patients with malignant glioma. We studied thermoreversible gelation polymer (TGP) as a novel drug delivery system (DDS) for treating this type of tumor. TGP exhibits sol–gel transition i.e., is water-soluble in the sol phase below the chosen sol–gel transiting temperature and water-insoluble in the gel phase above this temperature. We conjugated doxorubicin with TGP to prepare doxorubicin–TGP (DXR–TGP), then studied the kinetics of doxorubicin release from TGP and the antitumor activity of DXR–TGP in vitro and in vivo. The diffusive speed of doxorubicin from TGP was 9.4×10−7 cm2/s and doxorubicin was reliably released from TGP. DXR–TGP showed antitumor activity against the human glioma cell lines T98G and U87MG and in a subcutaneous tumor model in nude mice. Pathologically, detection of the proliferation marker Ki-67 was considerably lower in the DXR–TGP group than in the control group (30–40% vs. 60–70%, respectively). This is to the best of our knowledge the first report of TGP as a novel drug delivery system, and further we provide evidence that TGP exhibits potential for use as a novel DDS for malignant glioma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cairncross JG, Macdonald DR, Ramsay DA Aggressive oligodendroglioma: a chemosensitive tumor Neurosurgery 31: 78–82, 1992

    PubMed  CAS  Google Scholar 

  2. Fine HA, Dear KB, Loeffler JS, Black PM, Canellos GP Meta-analysis of radiation therapy with and without adjuvant chemotherapy for malignant gliomas in adults Cancer 71: 2585–2597, 1993

    PubMed  CAS  Google Scholar 

  3. Hildebrand J, Dewitte O, Dietrich PY, de Tribolet N Management of malignant brain tumors Eur Neurol 38: 238–253, 1997

    PubMed  CAS  Google Scholar 

  4. Lesser G.J, Grossman S The chemotherapy of high-grade astrocytomas Semin Oncol 21: 220–235, 1994

    PubMed  CAS  Google Scholar 

  5. Shapiro WR, Green SB, Burger PC, Selker RG, VanGilder JC, Robertson JT, Mealey J Jr, Ransohff J, Mahaley MS Jr: A randomized comparison of intra-arterial versus intravenous BCNU, with or without intravenous 5-fluorouracil, for newly diagnosed patients with malignant glioma. J Neurosurg 76: 772–781, 1992

    Article  PubMed  CAS  Google Scholar 

  6. Walker MD, Green SB, Byar DP,Alexander E Jr, Batzdorf U, Brooks WH, Hunt WE, MacCarty CS, Mahaley MS Jr, Mealey J Jr, Owens G, Ransohoff J, 2nd, Robertson JT, Shapiro WR, Smith KR Jr, Wilson CB, Strike TA Randomized comparisons of radiotherapy and nitrosoureas for the treatment of malignant glioma after surgery N Engl J Med 303: 1323–1329, 1980

    Article  PubMed  CAS  Google Scholar 

  7. Hochberg FH, Pruitt A Assumptions in the radiotherapy of glioblastoma Neurology 30: 907–911, 1980

    PubMed  CAS  Google Scholar 

  8. Stewart LA Chemotherapy in adult high-grade glioma: a systematic review and meta-analysis of individual patient data from 12 randomized trials Lancet 359: 1011–1018, 2002

    Article  PubMed  CAS  Google Scholar 

  9. Brem H, Brown M, Coleman RE, Friedman AH,Friedman HS, McLendon RE, Bigner SH, Zhao XG, Wikstrand CJ, Pegram CN Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. The Polymer-brain Tumor Treatment GroupLancet 345: 1008–1012, 1995

    Article  PubMed  CAS  Google Scholar 

  10. Valtonen S, Timonen U, Toivanen P, Kalimo H, Kivipelto L, Heiskanen O, Unsgaard G, Kuurne T Interstitial chemotherapy with carmustine-loaded polymers for high-grade gliomas: a randomized double-blind studyNeurosurgery 41: 44–48, 1997 ; discussion 48–49

    Article  PubMed  CAS  Google Scholar 

  11. Menei P, Benoit JP, Boisdron-Celle M, Fournier D, Mercier P, Guy G Drug targeting into the central nervous system by stereotactic implantation of biodegradable microspheresNeurosurgery 34: 1058–1064, 1994 discussion 1064

    PubMed  CAS  Google Scholar 

  12. Joki T, Machluf M, Atala A, Zhu J, Seyfried NT, Dunn IF, Abe T, Carroll RS, Black PM Continuous release of endostatin from microencapsulated engineered cells for tumor therapy Nat Biotechnol 19: 35–39, 2001

    Article  PubMed  CAS  Google Scholar 

  13. Westphal M, Hilt DC, Bortey E, Delavault P, Olivares R, Warnke PC, Whittle IR, Jaaskelainen J, Ram Z A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma Neuro-oncology 5: 79–88, 2003

    Article  PubMed  CAS  Google Scholar 

  14. McGovern PC, Lautenbach E, Brennan PJ, Lustig RA, Fishman NO Risk factors for postcraniotomy surgical site infection after 1,3-bis (2-chloroethyl)-1-nitrosourea (Gliadel) wafer placement Clin Infect Dis 36: 759–765, 2003

    Article  PubMed  CAS  Google Scholar 

  15. Weber EL, Goebel EA Cerebral edema associated with Gliadel wafers: Two case studies Neuro-oncology 7: 84–89, 2005

    Article  PubMed  Google Scholar 

  16. Yoshioka H, Mikami M, Mori Y, Tsuchida E A synthetic hydrogel with thermoreversible gelation.?: Preparation and rhological properties J Macromol Sci A31: 113–120, 1994

    CAS  Google Scholar 

  17. Yoshioka H, Mikami M, Mori Y, Tsuchida E A synthetic hydrogel with thermoreversible gelation.?: Effect of added salts J Macromol Sci A31: 1201–1205, 1994

    Google Scholar 

  18. Yoshioka H, Mikami M, Mori Y, Tsuchida E A synthetic hydrogel with thermoreversible gelation. III: an NMR study of the sol–gel transition Polym Adv Tech 5: 122–127, 1994

    Article  CAS  Google Scholar 

  19. Yoshioka H, Mori Y, Tsukikawa S, Kubota S Thermoreversible gelation on heating and on cooling aqueous gelatin-poly(N-isopropylacrylamide) conjugate Polym Adv Tech 9: 155–158, 1998

    Article  CAS  Google Scholar 

  20. Tsukikawa S, Matsuoka H, Kurahashi Y, Konno Y, Satoh K, Satoh R, Isogai A, Kimura K, Watanabe Y, Nakano S, Hayashi J, Kubota S A new method to prepare multicellular spheroids in cancer cell lines using a thermo-reversible gelation polymerArtif Organs 27: 598–604, 2003

    Article  PubMed  CAS  Google Scholar 

  21. Yoshioka H, Mori Y, Shimizu M Separation and recovery of DNA fragments by electrophoresis through a thermoreversible hydrogel composed of poly(ethylene oxide) and poly(propylene oxide)Anal Biochem 323: 218–223, 2003

    Article  PubMed  CAS  Google Scholar 

  22. Hishikawa K, Miura S, Marumo T, Yoshioka H, Mori Y, Takato T, Fujita T Gene expression profile of human mesenchymal stem cells during osteogenesis in three-dimensional thermoreversible gelation polymerBiochem Biophys Res Commun 317: 1103–1107, 2004

    Article  PubMed  CAS  Google Scholar 

  23. Shimizu S, Yamazaki M, Kubota S, Ozasa T, Moriya H, Kobayashi K, Mikami M, Mori Y, Yamaguchi S In vitro studies on a new method for islet microencapsulation using a thermoreversible gelation polymer, N-isopropylacrylamide- based copolymer Artif Organs 20: 1232–1237, 1996

    Article  PubMed  CAS  Google Scholar 

  24. Baker R. In: Controlled Release of Bioactive Materials, Academic, New York, 1980, pp 13–14

  25. Lee EKL, Lonsdale HK, Baker RW, Drioli E, Bresnahan PA Transport of steroids in poly(etheruethane) and poly(ethylene vinyl acetate) membranesJ Membr Sci 24: 125–143, 1985

    Article  Google Scholar 

  26. Imaizumi M, Kondo T, Taguchi T, Hattori T, Abe O, Kitano M, Wakui A A standardized method of using nude mice for the in vivo screening of antitumor drugs for human tumorsSurg Today 23: 412–419, 1993

    Article  PubMed  CAS  Google Scholar 

  27. Brem H, Tamargo RJ, Olivi A, Pinn M, Weingart JD, Wharam M, Epstein JI Biodegradable polymers for controlled delivery of chemotherapy with and without radiation therapy in the monkey brainJ Neurosurg 80: 283–290, 1994

    Article  PubMed  CAS  Google Scholar 

  28. Ram Z, Culver KW, Oshiro EM, Viola JJ, DeVroom HL, Otto E, Long Z, Chiang Y, McGarrity GJ, Muul LM, Katz D, Blaese RM, Oldfield EH Therapy of malignant brain tumors by intratumoral implantation of retroviral vector-producing cells Nat Med 3: 1354–1361, 1997

    Article  PubMed  CAS  Google Scholar 

  29. Westphal M, Giese A Local control of gliomas: the next best step – a good step? Front Radiat Ther Oncol 33: 214–226, 1999

    PubMed  CAS  Google Scholar 

  30. Harbaugh RE, Saunders RL, Reeder RF Use of implantable pumps for central nervous system drug infusions to treat neurological diseaseNeurosurgery 23: 693–698, 1988

    PubMed  CAS  Google Scholar 

  31. Cater SK, Anitha RAdriamycin-thoughs for the futureCancer Chemother Res 63: 1877–1883, 1975

    Google Scholar 

  32. Young C, Ozols RF, Myers CE The anthracycline antineoplastic drugs N Engl J Med 305: 139–153, 1981

    Article  PubMed  CAS  Google Scholar 

  33. Rahman A, Joher A, Neefe JR Immunotoxicity of multiple dosing regimens of free doxorubicin and doxorubicin entrapped in cardiolipin liposomesBr J Cancer 54: 401–408, 1986

    PubMed  CAS  Google Scholar 

  34. Bally MB, Nayar R, Masin D, Cullis PR, Mayer LD Studies on the myelosuppressive activity of doxorubicin entrapped in liposomesCancer Chemother Pharmacol 27: 13–19, 1990

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Toshini Okuhara (Division of Surgical Pathology, St. Marianna University School of Medicine Yokohama Seibu Hospital) for preparing paraffin specimens, Dr. Junko Fujigasaki (Division of Neuropathology, Jikei University School of Medicine) for examining specimens, Dr. Yuichi Murayama (Department of Neurosurgery, Jikei University School of Medicine) for their invaluable advice. This work was supported in part by a grant-in-aid for scientific research from the Japan Society for the Promotion of Science (No. 30226378).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takao Arai.

Additional information

Addressfor offprints: Takao Arai, M.D., Department of Neurosurgery, Jikei University School of Medicine, 3-25-8 Nishishinbashi, Minato-ku, Tokyo 105-8461, Japan; Tel.: +81-3-3433-1111; Fax: +81-3-3459-6412; E-mail: takao-a@jikei.ac.jp

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arai, T., Joki, T., Akiyama, M. et al. Novel drug delivery system using thermoreversible gelation polymer for malignant glioma. J Neurooncol 77, 9–15 (2006). https://doi.org/10.1007/s11060-005-9001-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-005-9001-4

Key words:

Navigation