Abstract
Pinus pinea is an interesting species for its valued pine nuts. Despite the high demand for this nut, the species is mostly harvested from natural forests, because the time elapsed until the trees come into production hinders advances toward a more intensive cultivation. The grafting technique has been used to favor an earlier production in native Mediterranean habitats. In Chile, stone pine has been recently included in orchards. The objective of this study was to assess the initial performance in terms of growth, entry into production and cone yield of three grafting trials of the species established in Chile; two of the trials included nursery-grafted plants and the other, in situ grafting of P. pinea on a 3-year-old P. radiata plantation. An earlier entry into production and a higher number of female strobili and 1-year-old conelets (up to 2.9 times) were found in nursery-grafted plants compared with control seedlings. Growth was higher in trees in situ grafted onto radiata pine than in seedlings; eight years after grafting, the trees had achieved reproductive maturity, 67% had on average three cones per tree, and the presence of female strobili and 1-year-old conelets was 6.6 and 15.6 times higher than in seedlings, respectively. Radiata pine could be a feasible rootstock for either in-nursery or in situ stone pine grafting. Grafting accelerated stone pine entry into production, showing to be an effective tool for stone pine propagation and cropping.



Similar content being viewed by others
References
Abellanas B, Pardos JA (1989) Seasonal development of female strobilus of Stone pine Pinus pinea L. Ann des Sci Forestières 46:S51–S53
Aletà N, Vilanova A. (2014) Cone production of stone pine grafted onto Allepo pine. 5th International Conference on Mediterranean Pines (Medpine5). Solsona, Spain
Baldini E (1986) Arboricoltura generale. Clueb, Bologna, Italy, p 404
Bono D, Aleta N (2013) Cone yield evaluation of a grafted Pinus pinea L. trial. Options Méditerranéennes 105:35–42
Butler I, Abellanas B, Monteagudo F, Bastida F, López J (1997) First results of a plot trial in agronomic grafting techniques in stone pine at the experimental farm “El Cebollar” (Moguer, Huelva). In Proceedings 2nd Spanish Forest Congress. pp. 99–104
Cabannes B (2015) Le pin pignon, une opportunité pour la forêt provençale. Forêt Méditerranéenne 36(1):37–48
Carneiro A, D’Alpuim M, Vacas De Carvalho M (2007) Manual Ilustrado de Enxertia do Pinheiro Manso. Estación Florestal Nacional, Ministerio de Agricultura, Portugal
Castaño J, Estirado M, Abellanas B, Butler I, Cosano I, Luengo J, García J, Candela J. (2004) Puesta en valor de los recursos forestales Mediterráneos. El injerto de pino piñonero (Pinus pinea L.). Manuales de Restauración Forestal No 9. Consejería de Medio Ambiente, Junta de Andalucía, Spain. 248 p
CEMAGREF (1982) Le Pin pignon. Forêt Méditerranéenne, IV 2:323–326
Crawford M (1995) Nut pines. West Aust Nut Tree Crops Assoc Yearb 19:56–66
Cutini A. (2002) Pines of silvicultural importance: Pinus pinea L. In Pines of silvicultural importance (pp. 329–342). New York: CABI Pub. Retrieved from https://books.google.cl/books/about/Pines_of_Silvicultural_Importance.html?id=DB8dCbmgQ74C&redir_esc=y
Di Rienzo J, Casanoves F, Balzarini M, Gonzalez L, Tablada M, Robledo C. (2020) InfoStat version 2020. Retrieved from http://www.infostat.com.ar
Freire J, Tomé M, Constantino M. (2014) Optimization of grafted Stone pine stands installation. 5th International Conference on Mediterranean Pines (Medpine5) 22-26 September 2014. Solsona, Spain: s.n
Gallardo-Martín J, Gallardo de Prado J (1991) Cinco estudios sobre injertos en pino piñonero. Ecología 5:197–209
Gárate J, Valeriano-Peñas C, Gutiérrez E. (2019) Radial growth response to climate change of populations of Pinus halepensis Mill., Pinus pinea L. and Pinus canariensis C. Sm. ex DC in the Collserola Natural Park (Barcelona). XXV IUFRO World Congress Forest Research and Cooperation for Sustainable Development, Curitiba, Brazil
Giertych M (1987) Seed orchards in crisis. Forest Ecol Manag 19(1):1–7. https://doi.org/10.1016/0378-1127(87)90005-3
Gordo J, Mutke S, Calama R, Gil L. (2011) El uso del pino piñonero en sistemas agroforestales. In: Jornada de Cultivos Alternativos con Especies Forestales. September 2011. Valladolid: Spain
Gordo J, Mutke S, Gil L. (2013) La relevancia de la especie de patrón porta injerto para el desarrollo de la copa y la producción de piña del pino piñonero injertado. In 4th Spanish Forest Congress. Vitoria-Gasteiz, Spain
Graves AR, Burgess PJ, Palma JHN, Herzog F, Moreno G, Bertomeu M, Dupraz C, Liagre F, Keesman K, van der Werf W, Koeffeman de Nooy A, van den Briel JP (2007) Development and application of bio-economic modelling to compare silvoarable, arable and forestry systems in three European countries. Ecol Eng 29:434–449
Greene D, Johnson E (2004) Modelling the temporal variation in the seed production of North American trees. Can. J. For. Res. 34:65–77
INC (International Nut and Dried Council) (2020) Statistical review: pine nuts. NUTFRUIT 79(1):82
Lakatos F, Mirtchev S. (2014) Manual for Visual Assessment of Forest Crown Condition. FAO, pp. 17.
Loewe V, Delard C, Balzarini M, Álvarez A, Navarro R (2015) Impact of climate and management variables on stone pine (Pinus pinea L.) growing in Chile. Agr. Forest Meteorol 214–215:106–116. https://doi.org/10.1016/j.agrformet.2015.08.248
Loewe-Muñoz V, Balzarini M, Del Río R, Delard C. (2018) Plantation spacing effects on Stone pine (Pinus pinea L.) initial growth and conelet production entrance. New Forests, 50(3), 489-503.
Loewe-Muñoz V, Balzarini M, Delard C, Alvarez A (2019) Variability of stone pine Pinus pinea L fruit traits impacting pine nut yield. Ann For Sci https://doi.org/10.1007/s13595-019-0816-0
Loewe-Muñoz V, Delard C, Del Rio R, Balzarini M (2020) Long-term effect of fertilization on stone pine growth and cone production. Ann For Sci 77:69. https://doi.org/10.1007/s13595-020-00978-6
Marggraff G. (2014) White gold, the Tunisian pine nut value chain. 5th International Conference on Mediterranean Pines (Medpine5) 22-26 September 2014. Solsona, Spain: s.n
Mencuccini M, Martínez-Vilalta J, Hamid HA, Korakaki E, Vanderkleinet D (2007) Evidence for age- and size-mediated controls of tree growth from grafting studies. Tree Physiol 27(3):463–473. https://doi.org/10.1093/treephys/27.3.463
Meyer RS, Du Val AE, Jensen HR (2012) Patterns and processes in crop domestication: an historical review and quantitative analysis of 203 global food crops. New Phytol 196:29–48
Miller AJ, Gross BL (2011) From forest to field: perennial fruit crop domestication. Am J Bot 98(9):1389–1414
Mutke S. (2011) Buscando nuevos futuros para las tierras agrarias: Análisis de las experiencias realizadas con pinares injertados. In Jornadas sobre pinar, pino, piña y piñón Piñonero. 3-4/11/2011. Córdoba, Spain
Mutke S, Gordo J, Gil L (2005) Variability of Mediterranean Stone pine cone production: yield loss as response to climate change. Agr Forest Meteorol 132(3–4):263–272
Mutke S, Gordo J, Gil L. (2005a) Cone yield characterization of a stone pine (Pinus pinea L.) clone bank. Silvae Genetica, 54(4), 189–197. Retrieved from https://www.researchgate.net/publication/290309307_Cone_yield_characterization_of_a_Stone_pine_Pinus_pinea_L_clone_bank
Mutke S, Iglesias S, Gil L (2007) Selección de clones de pino piñonero sobresalientes en la producción de piña. Invest Agrar Sist R 16(1):39–51
Mutke S, Calama R, Gordo J, Alvarez D, Gil L (2007) Stone pine orchards for nuts production: which, where, how? Nucis Newsl 14:22–25
Mutke S, Gordo J, Calama R, Pique M, Bono D, Gil L, Montero G. (2011) Mediterranean pine nuts from agroforestry systems, an opportunity for rural development. In International meeting on Mediterranean stone pine for agroforestry (p. 6). Valladolid, Spain: Agropine 2011
Mutke S, Calama R, González S, Montero G, Gordo J, Bono D, Gil L. (2012) Mediterranean Stone Pine Botany and Horticulture. In J. Janick (Ed.), Horticultural Reviews 39 (pp. 153–201), Wiley Blackwell. https://doi.org/https://doi.org/10.1002/9781118100592
Mutke S, Bonet JA, Calado N, Calvo J, Taghouti I, Redondo C, Martinez de Arano I (2019) Innovation networks on Mediterranean non-wood forest products. Int J Innov Sci Eng Technol 3(1):1–10
Mutke S, Vendramin GG, Fady B, Bagnoli F, González-Martínez SC. (2019a) Molecular and Quantitative Genetics of Stone Pine (Pinus pinea). In: Nandwani, D. (ed.), Genetic Diversity in Horticultural Plants. Series Sustainable Development and Biodiversity, 22: 61-84, ISBN 978-3-319-96453-9, Springer International Publishing
Nergiz C, Dönmez I. (2004) Chemical composition and nutritive value of Pinus pinea L. seeds. Food Chem., 86(3), 365–368. https://doi.org/https://doi.org/10.1016/j.foodchem.2003.09.009
Nikkanen T, Velling P (1987) Correlations between flowering and some vegetative characteristics of grafts of Pinus sylvestris L. Forest Ecol Manag 19:35–40
Patterson HD, Thompson R (1971) Recovery of inter-block information when block sizes are unequal. Biometrika 58:545–54
Piqué M. (2004) La modelización forestal como base para la gestión y aprovechamiento sostenible de los montes de Pinus pinea L. de Cataluña. Rural Forest, 3, 8.
Piqué M, Ammari Y, Solano D, Aleta N, Bono D, Sghaier T, Garchi S, Coello J, Coll L, Mutke S (2013) Production and management of stone pine (Pinus pinea) for early nut production: grafted plantations as an alternative for restoring degraded areas and generating income in rural communities of Tunisia. Options Méditerranéennes 105:43–47
Popova T, Hristova H. (2017) Trees of eternity-Pinus pinea L. in daily life, rituals, religion and symbolism. Archaeobotanical evidence from the territory of Bulgaria. J Archaeol. Sci. Reports, 5. https://doi.org/https://doi.org/10.1016/J.JASREP. 2017.06.012
Prada MA. (1999) Mejora genética de Pinus halepensis Mill. en la Comunidad Valenciana. Phd Thesis. ETSIM-UPM, Madrid, Spain
Ruguzova G, Pokhylchenko O, Ivanova I, Yaremchuk Y (2016) Some features of Pinus pumila Pall Reg and Pinus armandii Fanch seed formation in the conditions of introduction. Agr Forestry 62(4):203–212
Segura R, Javierre C, Lizarraga M, Ros E (2006) Other relevant components of nuts, phytosterols, folate and minerals. Br J Nutr 96(2):S36–S44. https://doi.org/10.1017/BJN20061862
Sghaier T, Othmani H, Ammari Y. (2012) Production and management of stone pine (Pinus pinea) for early nut production: grafted plantations as an alternative for restoring degraded areas and generating income in rural communities of Tunisia. Conference Bilateral Cooperation Project Tunisia-Spain. June 2012
Singh RV, Mahajan NM. (1967) Grafting in conifers in Himachal Pradesh, India. Forestry Research Institute & Colleges. In 11th Silvicultural Conference (pp. 294-298). Dehradun, India
Stroup W (2012) Generalized linear mixed models: modern concepts. CRC Press, Florida, US, Methods and Applications
Thrall PH, Oakeshott JG, Fitt G, Southerton S, Burdon JJ, Sheppard A, Russell RJ, Zalucki M, Heino M, Ford DR (2011) Evolution in agriculture: the application of evolutionary approaches to the management of biotic interactions in agro-ecosystems. Evol. Appl. 4:200–215
Vanhanen L, Savage G. (2013) Mineral analysis of Pine nuts (Pinus spp.) grown in New Zealand. Foods, 2 (143–150). https://doi: 10.3390/foods2020143
West B, Welch K, Galecki A (2014) Linear mixed models: a practical guide using statistical software, 2nd edn. CRC Press, New York, US
Weyrich LS, Duchene S, Soubrier J, Arriola L, Llamas B, Breen J, Morris AG, Alt KW, Caramelli D, Dresely V, Farrell M, Farrer AG, Francken M, Gully N, Haak W, Hardy K, Harvati K, Held P, Holmes EC, Kaidonis J, Lalueza-Fox C, de la Rasilla M, Rosas A, Semal P, Soltysiak A, Townsend G, Usai D, Wahl J, Huson DH, Dobney K, Cooper A (2017) Neanderthal behaviour, diet, and disease inferred from ancient DNA in dental calculus. Nature 20(544):357–361
White T, Duryea M, Powell G. (1997) Genetically Improved Pines for Reforesting Florida’s Timberlands. CIR1190. Gainesville: University of Florida Institute of Food and Agricultural Sciences. Retrieved from https://www.researchgate.net/publication/290309307_Cone_yield_characterization_of_a_Stone_pine_Pinus _pinea_L_clone_bank https://edis.ifas.ufl.edu/pdffiles/FR/FR00700.pdf
Acknowledgements
The authors thank Ramón Mella, Silvesco S.A. and Sociedad Agrícola Morel Morel for providing the land for trial establishment, and for taking care of the trials.
Funding
Trials were established and maintained via the projects “The edible pine nut of stone pine, an attractive business for Chile” funded by INNOVA, CORFO (07CT9 IUM-51) (2008–2012) and “Technique development for producing stone pine (Pinus pinea) pine nuts, an attractive commercial option for Chile”, funded by FONDEF, CONICYT (D11I1134) (2012-2016). The Chilean Ministry of Agriculture funded measurements and analyses.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Loewe-Muñoz, V., Del Río, R., Delard, C. et al. Enhancing Pinus pinea cone production by grafting in a non-native habitat. New Forests 53, 37–55 (2022). https://doi.org/10.1007/s11056-021-09842-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11056-021-09842-5