Skip to main content

Advertisement

Log in

Structural and functional cerebellar impairment in the progeny of preeclamptic rat mothers

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

It is known that preeclampsia alters the neurodevelopment of the descent of preeclamptic mothers. Given that cerebellar development occurs mainly when the brain in gestation is impacted by the preeclampsia, and it is described that in preeclampsia exist a placental dysregulation of pro- and anti-angiogenic factors, such as vascular endothelial growth factor and its main receptors: VEGF receptor 2 phosphorylated at Y951 and VEGF receptor 2 phosphorylated at Y1172, we decided to evaluate, the effect of experimental preeclampsia on the cerebellar expression of VEGF and two of its receptors, pY951 VEGF R2 and pY1172 VEGF R2. This evaluation was carried out in the progeny of preeclamptic mothers in an ontogenetic stage equivalent to infancy, using the experimental model of preeclampsia based on the administration of N (ω)-nitro-L-arginine methyl ester in pregnant Sprague–Dawley rats. As part of our assessment of the functional correlate of the cerebellum, we evaluated the balance and locomotor learning in the progeny using the rotarod test. We observed that experimental preeclampsia increased the blood pressure in the mothers, along with proteinuria and the alteration of the level of vascular endothelial growth factor in the cerebellar vermis of both sexes progeny. Furthermore, it was observed an increase VEGF receptor 2 phosphorylated at Y951 in the male progeny. Additionally, it was observed a decrease in locomotor learning among daughters of preeclamptic mothers. Future studies are necessary to continue understanding the complex pathophysiology of preeclampsia and how it affects the neurodevelopment of the offspring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ahmad, S., Hewett, P. W., Al-Ani, B., Sissaoui, S., Fujisawa, T., Cudmore, M. J., & Ahmed, A. (2011). Autocrine activity of soluble Flt-1 controls endothelial cell function and angiogenesis. Vascular cell3(1), 15. https://doi.org/10.1186/2045-824X-3-15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Aldinger, K. A., Thomson, Z., Phelps, I. G., Haldipur, P., Deng, M., Timms, A. E., Hirano, M., Santpere, G., Roco, C., Rosenberg, A. B., Lorente-Galdos, B., Gulden, F. O., O'Day, D., Overman, L. M., Lisgo, S. N., Alexandre, P., Sestan, N., Doherty, D., Dobyns, W. B., Seelig, G., … Millen, K. J. (2021). Spatial and cell type transcriptional landscape of human cerebellar development. Nature neuroscience24(8), 1163–1175. https://doi.org/10.1038/s41593-021-00872-y

  3. Autiero, M., Waltenberger, J., Communi, D., Kranz, A., Moons, L., Lambrechts, D., Kroll, J., Plaisance, S., De Mol, M., Bono, F., Kliche, S., Fellbrich, G., Ballmer-Hofer, K., Maglione, D., Mayr-Beyrle, U., Dewerchin, M., Dombrowski, S., Stanimirovic, D., Van Hummelen, P., Dehio, C., … Carmeliet, P. (2003). Role of PlGF in the intra- and intermolecular cross talk between the VEGF receptors Flt1 and Flk1. Nature medicine9(7), 936–943. https://doi.org/10.1038/nm884

  4. Badagionis, M., Sergentanis, T. N., Pervanidou, P., Kalampokas, E., Vlahos, N., & Eleftheriades, M. (2022). Preeclampsia and Cerebral Palsy in Offspring. Children (Basel, Switzerland)9(3), 385. https://doi.org/10.3390/children9030385

    Article  PubMed  Google Scholar 

  5. Bale T. L. (2016). The placenta and neurodevelopment: sex differences in prenatal vulnerability. Dialogues in clinical neuroscience18(4), 459–464. https://doi.org/10.31887/DCNS.2016.18.4/tbale

  6. Bergman, L., Acurio, J., Leon, J., Gatu, E., Friis, T., Nelander, M., Wikström, J., Larsson, A., Lara, E., Aguayo, C., Torres-Vergara, P., Wikström, A. K., & Escudero, C. (2021). Preeclampsia and Increased Permeability Over the Blood-Brain Barrier: A Role of Vascular Endothelial Growth Receptor 2. American journal of hypertension34(1), 73–81. https://doi.org/10.1093/ajh/hpaa142

    Article  PubMed  CAS  Google Scholar 

  7. Bergman, L., Hastie, R., Bokström-Rees, E., Zetterberg, H., Blennow, K., Schell, S., Imberg, H., Langenegger, E., Moodley, A., Walker, S., Tong, S., & Cluver, C. (2022). Cerebral biomarkers in neurologic complications of preeclampsia. American journal of obstetrics and gynecology227(2), 298.e1–298.e10. https://doi.org/10.1016/j.ajog.2022.02.036

    Article  PubMed  CAS  Google Scholar 

  8. Bohlen, M., Cameron, A., Metten, P., Crabbe, J. C., & Wahlsten, D. (2009). Calibration of rotational acceleration for the rotarod test of rodent motor coordination. Journal of neuroscience methods178(1), 10–14. https://doi.org/10.1016/j.jneumeth.2008.11.001

    Article  PubMed  Google Scholar 

  9. Bokslag, A., van Weissenbruch, M., Mol, B. W., & de Groot, C. J. (2016). Preeclampsia; short and long-term consequences for mother and neonate. Early human development102, 47–50. https://doi.org/10.1016/j.earlhumdev.2016.09.007

    Article  PubMed  Google Scholar 

  10. Carmeliet, P., & Ruiz de Almodovar, C. (2013). VEGF ligands and receptors: implications in neurodevelopment and neurodegeneration. Cellular and molecular life sciences : CMLS70(10), 1763–1778. https://doi.org/10.1007/s00018-013-1283-7

    Article  PubMed  CAS  Google Scholar 

  11. Carver, A. R., Tamayo, E., Perez-Polo, J. R., Saade, G. R., Hankins, G. D., & Costantine, M. M. (2014). The effect of maternal pravastatin therapy on adverse sensorimotor outcomes of the offspring in a murine model of preeclampsia. International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience33, 33–40. https://doi.org/10.1016/j.ijdevneu.2013.11.004

    Article  PubMed  CAS  Google Scholar 

  12. Dachew, B. A., Mamun, A., Maravilla, J. C., & Alati, R. (2018a). Association between hypertensive disorders of pregnancy and the development of offspring mental and behavioural problems: A systematic review and meta-analysis. Psychiatry research260, 458–467. https://doi.org/10.1016/j.psychres.2017.12.027

    Article  PubMed  Google Scholar 

  13. Dachew, B. A., Mamun, A., Maravilla, J. C., & Alati, R. (2018b). Pre-eclampsia and the risk of autism-spectrum disorder in offspring: meta-analysis. The British journal of psychiatry : the journal of mental science212(3), 142–147. https://doi.org/10.1192/bjp.2017.27

    Article  PubMed  Google Scholar 

  14. Dachew, B. A., Scott, J. G., Betts, K., Mamun, A., & Alati, R. (2020). Hypertensive disorders of pregnancy and the risk of offspring depression in childhood: Findings from the Avon Longitudinal Study of Parents and Children. Development and psychopathology32(3), 845–851. https://doi.org/10.1017/S0954579419000944

    Article  PubMed  Google Scholar 

  15. Dachew, B. A., Scott, J. G., Mamun, A., & Alati, R. (2019a). Pre-eclampsia and the risk of attention-deficit/hyperactivity disorder in offspring: Findings from the ALSPAC birth cohort study. Psychiatry research272, 392–397. https://doi.org/10.1016/j.psychres.2018.12.123

    Article  PubMed  Google Scholar 

  16. Dachew, B. A., Scott, J. G., Mamun, A., & Alati, R. (2019b). Hypertensive disorders of pregnancy and the risk of anxiety disorders in adolescence: Findings from the Avon Longitudinal Study of Parents and Children. Journal of psychiatric research110, 159–165. https://doi.org/10.1016/j.jpsychires.2019.01.001

    Article  PubMed  Google Scholar 

  17. de Alwis, N., Binder, N. K., Beard, S., Mangwiro, Y. T., Kadife, E., Cuffe, J. S., Keenan, E., Fato, B. R., Kaitu'u-Lino, T. J., Brownfoot, F. C., Marshall, S. A., & Hannan, N. J. (2022). The L-NAME mouse model of preeclampsia and impact to long-term maternal cardiovascular health. Life science alliance5(12), e202201517. https://doi.org/10.26508/lsa.202201517

  18. Ehrenstein, V., Rothman, K. J., Pedersen, L., Hatch, E. E., & Sørensen, H. T. (2009). Pregnancy-associated hypertensive disorders and adult cognitive function among Danish conscripts. American journal of epidemiology170(8), 1025–1031. https://doi.org/10.1093/aje/kwp223

    Article  PubMed  Google Scholar 

  19. Elkafrawi, D., Sisti, G., Araji, S., Khoury, A., Miller, J., & Rodriguez Echevarria, B. (2020). Risk Factors for Neonatal/Maternal Morbidity and Mortality in African American Women with Placental Abruption. Medicina (Kaunas, Lithuania)56(4), 174. https://doi.org/10.3390/medicina56040174

    Article  PubMed  Google Scholar 

  20. Erskine, L., François, U., Denti, L., Joyce, A., Tillo, M., Bruce, F., Vargesson, N., & Ruhrberg, C. (2017). VEGF-A and neuropilin 1 (NRP1) shape axon projections in the developing CNS via dual roles in neurons and blood vessels. Development (Cambridge, England)144(13), 2504–2516. https://doi.org/10.1242/dev.151621

    Article  PubMed  Google Scholar 

  21. Escudero, C., Celis, C., Saez, T., San Martin, S., Valenzuela, F. J., Aguayo, C., Bertoglia, P., Roberts, J. M., & Acurio, J. (2014a). Increased placental angiogenesis in late and early onset pre-eclampsia is associated with differential activation of vascular endothelial growth factor receptor 2. Placenta35(3), 207–215. https://doi.org/10.1016/j.placenta.2014.01.007

    Article  PubMed  CAS  Google Scholar 

  22. Escudero, C., Roberts, J. M., Myatt, L., & Feoktistov, I. (2014b). Impaired adenosine-mediated angiogenesis in preeclampsia: potential implications for fetal programming. Frontiers in pharmacology5, 134. https://doi.org/10.3389/fphar.2014.00134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Figueiró-Filho, E. A., Croy, B. A., Reynolds, J. N., Dang, F., Piro, D., Rätsep, M. T., Forkert, N. D., Paolozza, A., Smith, G. N., & Stroman, P. W. (2017a). Diffusion Tensor Imaging of White Matter in Children Born from Preeclamptic Gestations. AJNR. American journal of neuroradiology38(4), 801–806. https://doi.org/10.3174/ajnr.A5064

    Article  PubMed  PubMed Central  Google Scholar 

  24. Figueiró-Filho, E. A., Mak, L. E., Reynolds, J. N., Stroman, P. W., Smith, G. N., Forkert, N. D., Paolozza, A., Rätsep, M. T., & Croy, B. A. (2017b). Neurological function in children born to preeclamptic and hypertensive mothers - A systematic review. Pregnancy hypertension10, 1–6. https://doi.org/10.1016/j.preghy.2017.07.144

    Article  PubMed  Google Scholar 

  25. Gehmeyr, J., Maghnouj, A., Tjaden, J., Vorgerd, M., Hahn, S., Matschke, V., Theis, V., & Theiss, C. (2021). Disabling VEGF-Response of Purkinje Cells by Downregulation of KDR via miRNA-204-5p. International journal of molecular sciences22(4), 2173. https://doi.org/10.3390/ijms22042173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Grace, T., Bulsara, M., Pennell, C., & Hands, B. (2014). Maternal hypertensive diseases negatively affect offspring motor development. Pregnancy hypertension4(3), 209–214. https://doi.org/10.1016/j.preghy.2014.04.003

    Article  PubMed  Google Scholar 

  27. Gumusoglu, S. B., Chilukuri, A. S. S., Santillan, D. A., Santillan, M. K., & Stevens, H. E. (2020). Neurodevelopmental Outcomes of Prenatal Preeclampsia Exposure. Trends in neurosciences43(4), 253–268. https://doi.org/10.1016/j.tins.2020.02.003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Haldipur, P., Dang, D., & Millen, K. J. (2018). Embryology. Handbook of clinical neurology154, 29–44. https://doi.org/10.1016/B978-0-444-63956-1.00002-3

  29. Herrfurth, L., Theis, V., Matschke, V., May, C., Marcus, K., & Theiss, C. (2017). Morphological Plasticity of Emerging Purkinje Cells in Response to Exogenous VEGF. Frontiers in molecular neuroscience10, 2. https://doi.org/10.3389/fnmol.2017.00002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Ijomone, O. K., Osahon, I. R., Okoh, C. O. A., Akingbade, G. T., & Ijomone, O. M. (2021). Neurovascular dysfunctions in hypertensive disorders of pregnancy. Metabolic brain disease36(6), 1109–1117. https://doi.org/10.1007/s11011-021-00710-x

    Article  PubMed  CAS  Google Scholar 

  31. Ijomone, O. K., Shallie, P., & Naicker, T. (2018). Changes in the structure and function of the brain years after Pre-eclampsia. Ageing research reviews47, 49–54. https://doi.org/10.1016/j.arr.2018.06.006

    Article  PubMed  Google Scholar 

  32. Ives, C. W., Sinkey, R., Rajapreyar, I., Tita, A. T. N., & Oparil, S. (2020). Preeclampsia-Pathophysiology and Clinical Presentations: JACC State-of-the-Art Review. Journal of the American College of Cardiology76(14), 1690–1702. https://doi.org/10.1016/j.jacc.2020.08.014

    Article  PubMed  CAS  Google Scholar 

  33. Kay, V. R., Cahill, L. S., Hanif, A., Sled, J. G., Carmeliet, P., Tayade, C., & Croy, B. A. (2019a). Adult Pgf-/- mice behaviour and neuroanatomy are altered by neonatal treatment with recombinant placental growth factor. Scientific reports9(1), 9285. https://doi.org/10.1038/s41598-019-45824-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Kay, V. R., Rätsep, M. T., Cahill, L. S., Hickman, A. F., Zavan, B., Newport, M. E., Ellegood, J., Laliberte, C. L., Reynolds, J. N., Carmeliet, P., Tayade, C., Sled, J. G., & Croy, B. A. (2018). Effects of placental growth factor deficiency on behavior, neuroanatomy, and cerebrovasculature of mice. Physiological genomics50(10), 862–875. https://doi.org/10.1152/physiolgenomics.00076.2018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Kay, V. R., Rätsep, M. T., Figueiró-Filho, E. A., & Croy, B. A. (2019b). Preeclampsia may influence offspring neuroanatomy and cognitive function: a role for placental growth factor†. Biology of reproduction101(2), 271–283. https://doi.org/10.1093/biolre/ioz095

    Article  PubMed  Google Scholar 

  36. Kay, V. R., Wedel, N., & Smith, G. N. (2021). Family History of Hypertension, Cardiovascular Disease, or Diabetes and Risk of Developing Preeclampsia: A Systematic Review. Journal of obstetrics and gynaecology Canada : JOGC = Journal d'obstetrique et gynecologie du Canada : JOGC43(2), 227–236.e19. https://doi.org/10.1016/j.jogc.2020.08.010

  37. Koch, S., & Claesson-Welsh, L. (2012). Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harbor perspectives in medicine2(7), a006502. https://doi.org/10.1101/cshperspect.a006502

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Krause, D. N., Duckles, S. P., & Gonzales, R. J. (2011). Local oestrogenic/androgenic balance in the cerebral vasculature. Acta physiologica (Oxford, England)203(1), 181–186. https://doi.org/10.1111/j.1748-1716.2011.02323.x

    Article  PubMed  CAS  Google Scholar 

  39. Lara, E., Acurio, J., Leon, J., Penny, J., Torres-Vergara, P., & Escudero, C. (2018). Are the Cognitive Alterations Present in Children Born From Preeclamptic Pregnancies the Result of Impaired Angiogenesis? Focus on the Potential Role of the VEGF Family. Frontiers in physiology9, 1591. https://doi.org/10.3389/fphys.2018.01591

    Article  PubMed  PubMed Central  Google Scholar 

  40. Liu, X., Zhao, W., Liu, H., Kang, Y., Ye, C., Gu, W., Hu, R., & Li, X. (2016). Developmental and Functional Brain Impairment in Offspring from Preeclampsia-Like Rats. Molecular neurobiology53(2), 1009–1019. https://doi.org/10.1007/s12035-014-9060-7

    Article  PubMed  CAS  Google Scholar 

  41. Liu, Y., Ren, M., Bi, X., Fu, Y., Jing, X., Zhang, H., Cao, B., & Wang, C. (2021). A systematic review on the application of vascular endothelial growth factors in preeclampsia. Annals of palliative medicine10(8), 9259–9266. https://doi.org/10.21037/apm-21-2109

  42. Luna, R. L., Kay, V. R., Rätsep, M. T., Khalaj, K., Bidarimath, M., Peterson, N., Carmeliet, P., Jin, A., & Croy, B. A. (2016). Placental growth factor deficiency is associated with impaired cerebral vascular development in mice. Molecular human reproduction22(2), 130–142. https://doi.org/10.1093/molehr/gav069

    Article  PubMed  CAS  Google Scholar 

  43. Magro-Malosso, E. R., Saccone, G., Di Tommaso, M., Roman, A., & Berghella, V. (2017). Exercise during pregnancy and risk of gestational hypertensive disorders: a systematic review and meta-analysis. Acta obstetricia et gynecologica Scandinavica96(8), 921–931. https://doi.org/10.1111/aogs.13151

    Article  PubMed  Google Scholar 

  44. Maher, G. M., O'Keeffe, G. W., O'Keeffe, L. M., Matvienko-Sikar, K., Dalman, C., Kearney, P. M., McCarthy, F. P., & Khashan, A. S. (2020). The Association Between Preeclampsia and Childhood Development and Behavioural Outcomes. Maternal and child health journal24(6), 727–738. https://doi.org/10.1007/s10995-020-02921-7

    Article  PubMed  Google Scholar 

  45. Mak, L. E., Croy, B. A., Kay, V., Reynolds, J. N., Rätsep, M. T., Forkert, N. D., Smith, G. N., Paolozza, A., Stroman, P. W., & Figueiró-Filho, E. A. (2018). Resting-state functional connectivity in children born from gestations complicated by preeclampsia: A pilot study cohort. Pregnancy hypertension12, 23–28. https://doi.org/10.1016/j.preghy.2018.02.004

    Article  PubMed  Google Scholar 

  46. Mann, J. R., McDermott, S., Griffith, M. I., Hardin, J., & Gregg, A. (2011). Uncovering the complex relationship between pre-eclampsia, preterm birth and cerebral palsy. Paediatric and perinatal epidemiology25(2), 100–110. https://doi.org/10.1111/j.1365-3016.2010.01157.x

    Article  PubMed  Google Scholar 

  47. Marins, L. R., Anizelli, L. B., Romanowski, M. D., & Sarquis, A. L. (2019). How does preeclampsia affect neonates? Highlights in the disease's immunity. The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstetricians32(7), 1205–1212. https://doi.org/10.1080/14767058.2017.1401996

    Article  Google Scholar 

  48. Matsumoto, T., Bohman, S., Dixelius, J., Berge, T., Dimberg, A., Magnusson, P., Wang, L., Wikner, C., Qi, J. H., Wernstedt, C., Wu, J., Bruheim, S., Mugishima, H., Mukhopadhyay, D., Spurkland, A., & Claesson-Welsh, L. (2005). VEGF receptor-2 Y951 signaling and a role for the adapter molecule TSAd in tumor angiogenesis. The EMBO journal24(13), 2342–2353. https://doi.org/10.1038/sj.emboj.7600709

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Mitoma, H., Manto, M., & Hampe, C. S. (2019). Immune-mediated Cerebellar Ataxias: Practical Guidelines and Therapeutic Challenges. Current neuropharmacology17(1), 33–58. https://doi.org/10.2174/1570159X16666180917105033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Mor, O., Stavsky, M., Yitshak-Sade, M., Mastrolia, S. A., Beer-Weisel, R., Rafaeli-Yehudai, T., Besser, L., Hamou, B., Mazor, M., & Erez, O. (2016). Early onset preeclampsia and cerebral palsy: a double hit model?. American journal of obstetrics and gynecology214(1), 105.e1–105.e1059. https://doi.org/10.1016/j.ajog.2015.08.020

    Article  PubMed  Google Scholar 

  51. Muralimanoharan, S., Maloyan, A., & Myatt, L. (2013). Evidence of sexual dimorphism in the placental function with severe preeclampsia. Placenta34(12), 1183–1189. https://doi.org/10.1016/j.placenta.2013.09.015

    Article  PubMed  CAS  Google Scholar 

  52. Myatt L. (2022). The prediction of preeclampsia: the way forward. American journal of obstetrics and gynecology226(2S), S1102–S1107.e8. https://doi.org/10.1016/j.ajog.2020.10.047

  53. Olsson, A. K., Dimberg, A., Kreuger, J., & Claesson-Welsh, L. (2006). VEGF receptor signalling - in control of vascular function. Nature reviews. Molecular cell biology7(5), 359–371. https://doi.org/10.1038/nrm1911

    Article  PubMed  CAS  Google Scholar 

  54. Park, M. H., Lee, J. Y., Jeong, M. S., Jang, H. S., Endo, S., Bae, J. S., & Jin, H. K. (2018). The role of Purkinje cell-derived VEGF in cerebellar astrogliosis in Niemann-Pick type C mice. BMB reports51(2), 79–84. https://doi.org/10.5483/bmbrep.2018.51.2.168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Ramesar, S. V., Drewes, S. E., Gathiram, P., Moodley, J., & Mackraj, I. (2012). The effect of Kraussianone-2 (Kr2), a natural pyrano-isoflavone from Eriosema kraussianum, in an L-NAME- induced pre-eclamptic rat model. Phytotherapy research : PTR26(9), 1375–1380. https://doi.org/10.1002/ptr.3697

    Article  PubMed  CAS  Google Scholar 

  56. Ramesar, S. V., Mackraj, I., Gathiram, P., & Moodley, J. (2011). Sildenafil citrate decreases sFlt-1 and sEng in pregnant l-NAME treated Sprague-Dawley rats. European journal of obstetrics, gynecology, and reproductive biology157(2), 136–140. https://doi.org/10.1016/j.ejogrb.2011.03.005

    Article  PubMed  CAS  Google Scholar 

  57. Rana, S., Lemoine, E., Granger, J. P., & Karumanchi, S. A. (2019). Preeclampsia: Pathophysiology, Challenges, and Perspectives. Circulation research124(7), 1094–1112. https://doi.org/10.1161/CIRCRESAHA.118.313276

    Article  PubMed  CAS  Google Scholar 

  58. Rätsep, M. T., Hickman, A. F., & Croy, B. A. (2016a). The Elsevier trophoblast research award lecture: Impacts of placental growth factor and preeclampsia on brain development, behaviour, and cognition. Placenta48 Suppl 1, S40–S46. https://doi.org/10.1016/j.placenta.2016.02.001

    Article  PubMed  CAS  Google Scholar 

  59. Rätsep, M. T., Hickman, A. F., Maser, B., Pudwell, J., Smith, G. N., Brien, D., Stroman, P. W., Adams, M. A., Reynolds, J. N., Croy, B. A., & Paolozza, A. (2016b). Impact of preeclampsia on cognitive function in the offspring. Behavioural brain research302, 175–181. https://doi.org/10.1016/j.bbr.2016.01.030

    Article  PubMed  Google Scholar 

  60. Rätsep, M. T., Paolozza, A., Hickman, A. F., Maser, B., Kay, V. R., Mohammad, S., Pudwell, J., Smith, G. N., Brien, D., Stroman, P. W., Adams, M. A., Reynolds, J. N., Croy, B. A., & Forkert, N. D. (2016c). Brain Structural and Vascular Anatomy Is Altered in Offspring of Pre-Eclamptic Pregnancies: A Pilot Study. AJNR. American journal of neuroradiology37(5), 939–945. https://doi.org/10.3174/ajnr.A4640

    Article  PubMed  PubMed Central  Google Scholar 

  61. Reynolds, S. A., Roberts, J. M., Bodnar, L. M., Haggerty, C. L., Youk, A. O., & Catov, J. M. (2012). Newborns of preeclamptic women show evidence of sex-specific disparity in fetal growth. Gender medicine9(6), 424–435. https://doi.org/10.1016/j.genm.2012.10.013

    Article  PubMed  Google Scholar 

  62. Robinson, R., Lähdepuro, A., Tuovinen, S., Girchenko, P., Rantalainen, V., Heinonen, K., Lahti, J., Räikkönen, K., & Lahti-Pulkkinen, M. (2021). Maternal Hypertensive Pregnancy Disorders and Mental and Behavioral Disorders in the Offspring: a Review. Current hypertension reports23(5), 30. https://doi.org/10.1007/s11906-021-01141-w

    Article  PubMed  PubMed Central  Google Scholar 

  63. Sakurai, Y., Ohgimoto, K., Kataoka, Y., Yoshida, N., & Shibuya, M. (2005). Essential role of Flk-1 (VEGF receptor 2) tyrosine residue 1173 in vasculogenesis in mice. Proceedings of the National Academy of Sciences of the United States of America102(4), 1076–1081. https://doi.org/10.1073/pnas.0404984102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Saputra, D., Chang, J., Lee, B. J., Yoon, J. H., Kim, J., & Lee, K. (2016). Short-term manganese inhalation decreases brain dopamine transporter levels without disrupting motor skills in rats. The Journal of toxicological sciences41(3), 391–402. https://doi.org/10.2131/jts.41.391

    Article  PubMed  CAS  Google Scholar 

  65. Schmahmann J. D. (2019). The cerebellum and cognition. Neuroscience letters688, 62–75. https://doi.org/10.1016/j.neulet.2018.07.005

    Article  PubMed  CAS  Google Scholar 

  66. Scholz, J., Niibori, Y., W Frankland, P., & P Lerch, J. (2015). Rotarod training in mice is associated with changes in brain structure observable with multimodal MRI. NeuroImage107, 182–189. https://doi.org/10.1016/j.neuroimage.2014.12.003

  67. Sdrulla, A. D., & Linden, D. J. (2007). Double dissociation between long-term depression and dendritic spine morphology in cerebellar Purkinje cells. Nature neuroscience10(5), 546–548. https://doi.org/10.1038/nn1889

    Article  PubMed  CAS  Google Scholar 

  68. Silveira, R. C., Procianoy, R. S., Koch, M. S., Benjamin, A. C., & Schlindwein, C. F. (2007). Growth and neurodevelopment outcome of very low birth weight infants delivered by preeclamptic mothers. Acta paediatrica (Oslo, Norway : 1992)96(12), 1738–1742. https://doi.org/10.1111/j.1651-2227.2007.00552.x

  69. Staff, A. C., Braekke, K., Harsem, N. K., Lyberg, T., & Holthe, M. R. (2005). Circulating concentrations of sFlt1 (soluble fms-like tyrosine kinase 1) in fetal and maternal serum during pre-eclampsia. European journal of obstetrics, gynecology, and reproductive biology122(1), 33–39. https://doi.org/10.1016/j.ejogrb.2004.11.015

    Article  PubMed  CAS  Google Scholar 

  70. Sun, Z., Li, X., Massena, S., Kutschera, S., Padhan, N., Gualandi, L., Sundvold-Gjerstad, V., Gustafsson, K., Choy, W. W., Zang, G., Quach, M., Jansson, L., Phillipson, M., Abid, M. R., Spurkland, A., & Claesson-Welsh, L. (2012). VEGFR2 induces c-Src signaling and vascular permeability in vivo via the adaptor protein TSAd. The Journal of experimental medicine209(7), 1363–1377. https://doi.org/10.1084/jem.20111343

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Tillo, M., Erskine, L., Cariboni, A., Fantin, A., Joyce, A., Denti, L., & Ruhrberg, C. (2015). VEGF189 binds NRP1 and is sufficient for VEGF/NRP1-dependent neuronal patterning in the developing brain. Development (Cambridge, England)142(2), 314–319. https://doi.org/10.1242/dev.115998

    Article  PubMed  CAS  Google Scholar 

  72. Tjaden, J., Eickhoff, A., Stahlke, S., Gehmeyr, J., Vorgerd, M., Theis, V., Matschke, V., & Theiss, C. (2021). Expression Pattern of T-Type Ca2+ Channels in Cerebellar Purkinje Cells after VEGF Treatment. Cells10(9), 2277. https://doi.org/10.3390/cells10092277

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Tuovinen, S., Aalto-Viljakainen, T., Eriksson, J. G., Kajantie, E., Lahti, J., Pesonen, A. K., Heinonen, K., Lahti, M., Osmond, C., Barker, D. J., & Räikkönen, K. (2014a). Maternal hypertensive disorders during pregnancy: adaptive functioning and psychiatric and psychological problems of the older offspring. BJOG : an international journal of obstetrics and gynaecology121(12), 1482–1491. https://doi.org/10.1111/1471-0528.12753

    Article  PubMed  CAS  Google Scholar 

  74. Tuovinen, S., Eriksson, J. G., Kajantie, E., & Räikkönen, K. (2014b). Maternal hypertensive pregnancy disorders and cognitive functioning of the offspring: a systematic review. Journal of the American Society of Hypertension : JASH8(11), 832–47.e1. https://doi.org/10.1016/j.jash.2014.09.005

    Article  PubMed  Google Scholar 

  75. Tuovinen, S., Räikkönen, K., Kajantie, E., Pesonen, A. K., Heinonen, K., Osmond, C., Barker, D. J., & Eriksson, J. G. (2010). Depressive symptoms in adulthood and intrauterine exposure to pre-eclampsia: the Helsinki Birth Cohort Study. BJOG : an international journal of obstetrics and gynaecology117(10), 1236–1242. https://doi.org/10.1111/j.1471-0528.2010.02634.x

    Article  PubMed  CAS  Google Scholar 

  76. Tuovinen, S., Räikkönen, K., Pesonen, A. K., Lahti, M., Heinonen, K., Wahlbeck, K., Kajantie, E., Osmond, C., Barker, D. J., & Eriksson, J. G. (2012). Hypertensive disorders in pregnancy and risk of severe mental disorders in the offspring in adulthood: the Helsinki Birth Cohort Study. Journal of psychiatric research46(3), 303–310. https://doi.org/10.1016/j.jpsychires.2011.11.015

    Article  PubMed  Google Scholar 

  77. Vakil, P., Henry, A., Craig, M. E., & Gow, M. L. (2022). A review of infant growth and psychomotor developmental outcomes after intrauterine exposure to preeclampsia. BMC pediatrics22(1), 513. https://doi.org/10.1186/s12887-022-03542-5

    Article  PubMed  PubMed Central  Google Scholar 

  78. Valencia, M., Illanes, J., Santander, O., Saavedra, D., Adaros, M., Ibarra, A., Saavedra, G., & Pascual, R. (2019). Environmental enrichment restores the reduced expression of cerebellar synaptophysin and the motor coordination impairment in rats prenatally treated with betamethasone. Physiology & behavior209, 112590. https://doi.org/10.1016/j.physbeh.2019.112590

    Article  CAS  Google Scholar 

  79. Valencia, M., Santander, O., Torres, E., Zamora, N., Muñoz, F., & Pascual, R. (2022). Environmental enrichment reverses cerebellar impairments caused by prenatal exposure to a synthetic glucocorticoid. AIMS neuroscience9(3), 320–344. https://doi.org/10.3934/Neuroscience.2022018

    Article  PubMed  PubMed Central  Google Scholar 

  80. van Wassenaer, A. G., Westera, J., van Schie, P. E., Houtzager, B. A., Cranendonk, A., de Groot, L., Ganzevoort, W., Wolf, H., & de Vries, J. I. (2011). Outcome at 4.5 years of children born after expectant management of early-onset hypertensive disorders of pregnancy. American journal of obstetrics and gynecology204(6), 510.e1–510.e5109. https://doi.org/10.1016/j.ajog.2011.02.032

  81. Wang, R., Ma, Y., Zhan, S., Zhang, G., Cao, L., Zhang, X., Shi, T., & Chen, W. (2020). B7-H3 promotes colorectal cancer angiogenesis through activating the NF-κB pathway to induce VEGFA expression. Cell death & disease11(1), 55. https://doi.org/10.1038/s41419-020-2252-3

    Article  CAS  Google Scholar 

  82. Watson, E.C., Grant, Z.L. & Coultas, L. Endothelial cell apoptosis in angiogenesis and vessel regression. Cell. Mol. Life Sci. 74, 4387–4403 (2017). https://doi.org/10.1007/s00018-017-2577-y

    Article  PubMed  CAS  Google Scholar 

  83. Zhang, M., Jin, H., & Liu, X. (2022). Preeclampsia is associated with an increased risk of autism spectrum disorder (ASD): A systematic review and meta-analysis. Asian journal of surgery45(11), 2521–2523. https://doi.org/10.1016/j.asjsur.2022.05.133

    Article  PubMed  Google Scholar 

  84. Zhao, Y., Zheng, Y., Liu, X., Luo, Q., Wu, D., Liu, X., & Zou, L. (2018). Inhibiting trophoblast PAR-1 overexpression suppresses sFlt-1-induced anti-angiogenesis and abnormal vascular remodeling: a possible therapeutic approach for preeclampsia. Molecular human reproduction24(3), 158–169. https://doi.org/10.1093/molehr/gax068

    Article  PubMed  CAS  Google Scholar 

  85. Zhou, W., Wang, H., Yang, Y., Guo, F., Yu, B., & Su, Z. (2022). Trophoblast Cell Subtypes and Dysfunction in the Placenta of Individuals with Preeclampsia Revealed by Single-Cell RNA Sequencing. Molecules and cells45(5), 317–328. https://doi.org/10.14348/molcells.2021.0211

  86. Zhu, X., Jiang, R., Ying, X., Li, Z., & Jiang, P. (2022). The role of ferritin and iron dextran in exacerbating preeclampsia in an L-NAME-treated rat model. Annals of translational medicine10(16), 889. https://doi.org/10.21037/atm-22-3675

  87. Zuo, J., & Jiang, Z. (2020). Melatonin attenuates hypertension and oxidative stress in a rat model of L-NAME-induced gestational hypertension. Vascular medicine (London, England)25(4), 295–301. https://doi.org/10.1177/1358863X20919798

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We want to thank for the support received from Escuela de Kinesiología, Pontificia Universidad Católica de Valparaíso, Chile.

Funding

This research did not receive any specific grant from any funding agency in the public, commercial or not-for-profit sector. The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Martina Valencia-Narbona, Eloísa Torres, Fernanda Muñoz and Trinidad García. The first draft of the manuscript was written by Martina Valencia-Narbona and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Authors are responsible for correctness of the statements provided in the manuscript.

Corresponding author

Correspondence to Martina Valencia-Narbona.

Ethics declarations

Conflict of interest

The authors declare that that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Ethics approval

All procedures were performed according to protocols similar to the standards used in the ethical standards as laid down in the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards and were approved by “Pontificia Universidad Católica de Valparaíso” Bioethics Committee.

Approval was obtained from the ethics committee of University Pontificia Universidad Católica de Valparaíso. The procedures used in this study adhere to the tenets of the Declaration of Helsinki.

Manuscript has no associated data

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

In Brief

Effect of experimental preeclampsia on locomotor learning and differential cerebellar expression of the vascular endothelial growth factor and its receptors in the female and male infant progeny of preeclamptic mothers.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valencia-Narbona, M., Torres, E., Muñoz, F. et al. Structural and functional cerebellar impairment in the progeny of preeclamptic rat mothers. Neurosci Behav Physi 53, 1283–1299 (2023). https://doi.org/10.1007/s11055-023-01503-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-023-01503-8

Keywords

Navigation