Skip to main content

Advertisement

Log in

The Integrative Level of the Hierarchical Spatial Orientation System in Animals

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

This review of the literature analyzes knowledge of the higher, integrative level of the physiological system by which animals orient themselves in space. Studies of the patterns of operation of the system at this level are relevant as impairments may underlie degradation of the ability to orient in space (spatial agnosia), an important sign of a number of brain diseases, particularly Alzheimer’s disease. Studies over recent decades have identified the main functional components of the system integrating information on an animal’s spatial position. The significance of these findings is reflected in a number of prestigious awards and honors, including the 2014 Nobel Prize in Physiology and Medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. V. Astacheva, “Studies of the oscillatory activity and interstructural relationships in the limbic system,” Fund. Issled., No. 12–4, 699–703 (2011).

  2. R. M. Borisyuk, “Modeling of the hippocampal theta rhythm,” Zh. Vyssh. Nerv. Deyat., 54, No. 1, 85–100 (2004).

    Google Scholar 

  3. I. E. Mysin, Ya. B. Kazanovich, and V. F. Kichigina, “Modeling of the neural network of the medial septal region as a pacemaker of the theta rhythm,” Fund. Issled., No. 11–4, 691–695 (2013).

  4. V. D. Tsukerman, Z. S. Eremenko, O. V. Karimova, et al., “A mathematical model of spatial coding in the hippocampal formation. I. Neurodynamics of grid cells,” Matemat. Biol. Bioinformat., 7, No. 1, 206–243 (2012).

    Google Scholar 

  5. M. I. Anderson and K. J. Jeffery, “Heterogeneous modulation of place cell firing by changes in context,” J. Neurosci., 23, No. 26, 8827–8835 (2003).

    CAS  PubMed  Google Scholar 

  6. C. Barry, L. L. Ginzberg, J. O’Keefe, and N. Burgess, “Grid cell firing patterns signal environ-mental novelty by expansion,” Proc. Natl. Acad. Sci. USA, 109, No. 43, 17687–17692 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. C. Barry, C. Lever, R. Hayman, et al., “The boundary vector cell model of place cell firing and spatial memory,” Rev. Neurosci., 17, No. 1–2, 71–97 (2006).

    PubMed  PubMed Central  Google Scholar 

  8. C. N. Boccara, F. Sargolini, V. H. Thoresen, et al., “Grid cells in pre-and parasubiculum,” Nat. Neurosci., 13, No. 8, 987–994 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. V. H. Brun, T. Solstad, K. B. Kjelstrup, et al., “Progressive increase in grid scale from dorsal to ventral medial entorhinal cortex,” Hippocampus, 18, No. 12, 1200–1212 (2008).

    Article  PubMed  Google Scholar 

  10. N. Burgess and J. O’Keefe, “Models of place and grid cell firing and theta rhythmicity,” Curr. Opin. Neurobiol., 21, No. 5, 734–744 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. F. Cacucci, M. Yi, T. J. Wills, et al., “Place cell firing correlates with memory deficits and amyloid plaque burden in Tg2576 Alzheimer mouse model,” Proc. Natl. Acad. Sci. USA, 105, No. 22, 7863–7868 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. M. J. Chadwick, A. E. J. Jolly, D. P. Amos, et al., “A goal direction signal in the human entorhinal/subicular region,” Curr. Biol., 25, No. 1, 87–92 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. G. Chen, J. A. King, N. Burgess, and J. O’Keefe, “How vision and movement combine in the hippocampal place code,” Proc. Natl. Acad. Sci. USA, 110, No. 1, 378–383 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. B. J. Clark and J. S. Taube, “Vestibular and attractor network basis of the head direction cell signal in subcortical circuits,” Front Neural Circuits, 6 (2012).

  15. L. L. Colgin, “Mechanisms and functions of theta rhythms,” Ann. Rev. Neurosci., 36, No. 1, 295–312 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. A. R. Deipolyi, K. P. Rankin, L. Mucke, et al., “Spatial cognition and the human navigation network in AD and MCI,” Neurology, 69, No. 10, 986–997 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. G. Dragoi and S. Tonegawa, “Distinct preplay of multiple novel spatial experiences in the rat,” Proc. Natl. Acad. Sci. USA, 110, No. 22, 9100–9105 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. G. Dragoi and S. Tonegawa, “Selection of preconfigured cell assemblies for representation of novel spatial experiences,” Philos. Trans. R. Soc. B. Biol. Sci., 369, No. 1635, 20120522 (2014).

    Article  Google Scholar 

  19. A. S. Etienne and K. J. Jeffery, “Path integration in mammals,” Hippocampus, 14, No. 2, 180–192 (2004).

    Article  PubMed  Google Scholar 

  20. D. J. Foster and M. A. Wilson, “Reverse replay of behavioural sequences in hippocampal place cells during the awake state,” Nature, 440, No. 7084, 680–683 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. M. Fyhn, S. Molden, M. P. Witter, et al., “Spatial representation in the entorhinal cortex,” Science, 305, No. 5688, 1258–1264 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. C. C. Guariglia and R. Nitrini, “Topographical disorientation in Alzheimer’s disease,” Arq. Neuropsiquiatr., 67, No. 4, 967–972 (2009).

    Article  PubMed  Google Scholar 

  23. T. Hafting, M. Fyhn, S. Molden, et al., “Microstructure of a spatial map in the entorhinal cortex,” Nature, 436, No. 7052, 801–806 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. T. Hartley, C. Lever, N. Burgess, and J. O’Keefe, “Space in the brain: how the hippocampal formation supports spatial cognition,” Philos. Trans, R. Soc. B., 369, No. 1635, 20120510 (2014).

    Article  Google Scholar 

  25. M. E. Hasselmo, C. Bodelon, and B. P. Wyble, “A Proposed function for hippocampal theta rhythm: separate phases of encoding and retrieval enhance reversal of prior learning,” Neural Computation, 14, No. 4, 793–817 (2002).

    Article  PubMed  Google Scholar 

  26. J. Jacobs, “Hippocampal theta oscillations are slower in humans than in rodents: implications for models of spatial navigation and memory,” Philos. Trans. R. Soc. B. Biol. Sci., 369, No. 1635 (2014).

  27. J. Jacobs, C. T. Weidemann, J. F. Miller, et al., “Direct recordings of grid-like neuronal activity in human spatial navigation,” Nat. Neurosci., 16, No. 9, 1188–1190 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. A. Johnson, K. Seeland, and A. D. Redish, “Reconstruction of the postsubiculum head direction signal from neural ensembles,” Hippocampus, 15, No. 1, 86–96, No. 2005.

  29. M. W. Jung, S. I. Wiener, and B. L. McNaughton, “Comparison of spatial firing characteristics of units in dorsal and ventral hippocampus of the rat,” J. Neurosci., 14, No. 12, 7347–7356 (1994).

    CAS  PubMed  Google Scholar 

  30. K. Kang, M. Shelley, and H. Sompolinsky, “Mexican hats and pinwheels in visual cortex,” Proc. Natl. Acad. Sci. USA, 100, No. 5, 2848–2853 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. K. B. Kjelstrup, T. Solstad, V. H. Brun, et al., “Finite scale of spatial representation in the hippocampus,” Science, 321, No. 5885, 140–143 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. E. Kropff Causa, J. E. Carmichael, R. Baldi, et al., “Modulation of hippocampal and entorhinal theta frequency by running speed and acceleration,” Soc. Neurosci. Abstr., 39 (2013).

  33. S. Kuhn and J. Gallinat, “Segregating cognitive functions within hippocampal formation: A quantitative meta-analysis on spatial navigation and episodic memory,” Hum. Brain Mapp., 35, No. 4, 1129–1142 (2014).

    Article  PubMed  Google Scholar 

  34. A. K. Lee and M. A. Wilson, “Memory of sequential experience in the hippocampus during slow wave sleep,” Neuron, 36, No. 6, 1183–1194 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. C. Lever, S. Burton, A. Jeewajee, et al., “Boundary vector cells in the subiculum of the hippocampal formation,” J. Neurosci., 29, No. 31, 9771–9777 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. B. E. Levin, “Spatial cognition in Parkinson disease,” Alzheimer Dis. Assoc. Disord., 4, No. 3, 161–170 (1990).

    Article  CAS  PubMed  Google Scholar 

  37. B. L. McNaughton, F. P. Battaglia, O. Jensen, et al., “Path integration and the neural basis of the ‘cognitive map,’” Nat. Rev. Neurosci., 7, No. 8, 663–678 (2006).

  38. E. I. Moser, E. Kropff, and M.-B. Moser, “Place cells, grid cells, and the brain’s spatial representation system,” Ann. Rev. Neurosci., 31, No. 1, 69–89 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. E. I. Moser and M.-B. Moser, “A metric for space,” Hippocampus, 18, No. 12, 1142–1156 (2008).

    Article  PubMed  Google Scholar 

  40. E. I. Moser, Y. Roudi, M. P. Witter, et al., “Grid cells and cortical representation,” Nat. Rev. Neurosci., 15, No. 7, 466–481 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. M.-B. Moser, D. C. Rowland, and E. I. Moser, “Place cells, grid cells, and memory,” Cold Spring Harb. Perspect. Biol., 7, No. 2, a021808 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  42. R. U. Muller, E. Bostock, J. S. Taube, and J. L. Kubie, “On the directional firing properties of hippocampal place cells,” J. Neurosci., 14, No. 12, 7235–7251 (1994).

    CAS  PubMed  Google Scholar 

  43. R. U. Muller and J. L. Kubie, “The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells,” J. Neurosci., 7, No. 7, 1951–1968 (1987).

    CAS  PubMed  Google Scholar 

  44. The Nobel Prize in Physiology or Medicine 2014, Nobelprize.org, Nobel Media (2014).

  45. J. O’Keefe and N. Burgess, “Geometric determinants of the place fields of hippocampal neurons,” Nature, 381, No. 6581, 425–428 (1996).

    Article  PubMed  Google Scholar 

  46. J. O’Keefe and D. H. Conway, “Hippocampal place units in the freely moving rat: Why they fire where they fire,” Exp. Brain Res., 31, No. 4, 573–590 (1978).

    PubMed  Google Scholar 

  47. J. O’Keefe and J. Dostrovsky, “The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat,” Brain Res., 34, No. 1, 171–175 (1971).

    Article  PubMed  Google Scholar 

  48. J. O’Keefe and L. Nadel, “The hippocampus as a cognitive map,” Behav. Brain Sci., 2, No. 4, 487–533 (1978).

    Article  Google Scholar 

  49. J. B. Ranckjr, Jr., “Head direction cells in the deep cell layer of dorsal presubiculum in freely moving rats,” Soc. Neurosci. Abstr., 10 (1984).

  50. A. Samsonovich and B. L. McNaughton, “Path integration and cognitive mapping in a continuous attractor neural network model,” J. Neurosci., 17, No. 15, 5900–5920 (1997).

    CAS  PubMed  Google Scholar 

  51. A. V. Samsonovich, “Continuous attractor network,” in: Scholarpedia: the Free Peer-Reviewed Encyclopedia, www.scholarpedia.org/article/Continuous_attractor_network (2010).

  52. F. Sargolini, M. Fyhn, T. Hafting, et al., “Conjunctive representation of position, direction, and velocity in entorhinal cortex,” Science, 312, No. 5774, 758–762 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. F. Savelli, D. Yoganarasimha, and J. J. Knierim, “Influence of boundary removal on the spatial representations of the medial entorhinal cortex,” Hippocampus, 18, No. 12, 1270–1282 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  54. S. Serino, P. Cipresso, F. Morganti, and G. Riva,” The role of egocentric and allocentric abilities in Alzheimer’s disease: A systematic review,” Ageing Res. Rev., 16, 32–44 (2014).

    Article  PubMed  Google Scholar 

  55. T. Solstad, C. N. Boccara, E. Kropff, et al., “Representation of geometric borders in the entorhinal cortex,” Science, 322, No. 5909, 1865–1868 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. R. W. Stackman and J. S. Taube, “Firing properties of rat lateral mammillary single units: head direction, head pitch, and angular head velocity,” J. Neurosci., 18, No. 21, 9020–9037 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. H. Stensola, T. Stensola, T. Solstad, et al., “The entorhinal grid map is discretized,” Nature, 492, No. 7427, 72–78 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. S. Stewart, A. Jeewajee, T. J. Wills, et al., “Boundary coding in the rat subiculum,” Philos. Trans. R. Soc. B. Biol. Sci. 369, No. 1635, 20120514 (2014).

    Article  Google Scholar 

  59. J. S. Taube, “The head direction signal: origins and sensory-motor integration,” Ann. Rev. Neurosci., 30, No. 1, 181–207 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. J. S. Taube, “Head direction cells recorded in the anterior thalamic nuclei of freely moving rats,” J. Neurosci., 15, No. 1, 70–86 (1995).

    CAS  PubMed  Google Scholar 

  61. J. S. Taube, R. U. Muller, and J. B. Ranck, “Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis,” J. Neurosci., 10, No. 2, 420–435 (1990).

    CAS  PubMed  Google Scholar 

  62. J. S. Taube, R. U. Muller, and J. B. Ranck, “Head-direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations,” J. Neurosci., 10, No. 2, 436–447 (1990).

    CAS  PubMed  Google Scholar 

  63. E. C. Tolman, “Cognitive maps in rats and men,” Psychol. Rev., 55, No. 4, 189–208 (1948).

    Article  CAS  PubMed  Google Scholar 

  64. E. Y. Uc, M. Rizzo, S. W. Anderson, et al., “Impaired navigation in drivers with Parkinson’s disease,” Brain, 130, No. 9, 2433–2440 (2007).

    Article  PubMed  Google Scholar 

  65. C. H. Vanderwolf, “Hippocampal electrical activity and voluntary movement in the rat,” EEG Clin. Neurophysiol., 26, No. 4, 407–418 (1969).

    Article  CAS  Google Scholar 

  66. M. A. Wilson and B. L. McNaughton, “Reactivation of hippocampal ensemble memories during sleep,” Science, 265, No. 5172, 676–679 (1994).

    Article  CAS  PubMed  Google Scholar 

  67. S.-J. Zhang, J. Ye, J. J. Couey, et al., “Functional connectivity of the entorhinal–hippocampal space circuit,” Philos. Trans. R. Soc. B., 369, No. 1635, 20120516 (2014).

    Article  Google Scholar 

  68. S. Zhang and D. Manahan-Vaughan, “Spatial olfactory learning contributes to place field formation in the hippocampus,” Cereb. Cortex, 25, No. 2, 423–432 (2015).

    Article  PubMed  Google Scholar 

  69. R. Zhao, S. W. Fowler, A. C. A. Chiang, et al., “Impairments in experience-dependent scaling and stability of hippocampal place fields limit spatial learning in a mouse model of Alzheimer’s disease,” Hippocampus, 24, No. 8, 963–978 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Mukhin.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 102, No. 4, pp. 411–420, April, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukhin, V.N., Pavlov, K.I. & Klimenko, V.M. The Integrative Level of the Hierarchical Spatial Orientation System in Animals. Neurosci Behav Physi 47, 675–680 (2017). https://doi.org/10.1007/s11055-017-0454-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-017-0454-7

Keywords

Navigation