Skip to main content
Log in

Changes in Cerebral Blood Flow on Performance of a Diving Reaction in Humans

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Cerebral blood flow was studied in humans during performance of a diving reaction simulated by cold + hypoxia + hypercapnia, as well as in a cold test, on respiration of a 7% hypercapnic mix, and in the Genche test (breath-holding). A total of 18 subjects (18–22 years old with no special physical training were studied. Cerebral blood fl ow was recorded by transcranial dopplerography. Simulated diving increased the linear cerebral blood fl ow rate by 82.3 ± 15.2% and decreased the pulse index by 77.2 ± 13.1%. In the cold test, the linear blood fl ow rate remained unaltered, while the pulse index increased. There were no significant changes in these values on respiration of the 7% hypercapnic mix. In the Genche test, the linear blood flow rate increased by 52.3 ± 12.5% and the pulse index decreased by 64.5 ± 15%. The latent period of changes in cerebral blood flow in simulated diving (14–43 sec) indicated that the regulatory influences altering blood flow were metabolic in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. I. Baranova, “Characteristics of the cardiovascular system in the diving reaction in humans,” Ros. Fiziol. Zh., 90, No. 1, 20–31(2004).

    CAS  Google Scholar 

  2. T. I. Baranova, R. I. Kovalenko, A. V. Mitrofanova, and I. N. Yanvareva, “Dynamics of measures of energy metabolism on adaptation to diving in humans,” Zh. Evolyuts. Biokhim. Fiziol., 46, No. 5, 411–420 (2010).

    CAS  Google Scholar 

  3. B. V. Gaidar, V. E. Parfenov, and D. V. Svistov, A Practical Handbook for Transcranial Dopplerography, VMA, St. Petersburg (1995).

    Google Scholar 

  4. V. P. Galantsev, Adaptation of the Cardiovascular System of Semi-Aquatic Amniotes, LGU, Leningrad (1988).

    Google Scholar 

  5. V. I. Evlakhov and I. Z. Poyasov, “Arterial and venous circulation in deep respiration in conditions of orthostatic and antiorthostatic stimuli,” Ros. Fiziol. Zh., 87, No. 1, 37–42 (2001).

    CAS  Google Scholar 

  6. T. V. Kozyreva, “Central and peripheral thermoreceptors. Com parative analysis of prolonged adaptation of the body to cold and noradrenaline,” Ros. Fiziol. Zh., 91, No. 12, 1492–1503 (2005).

    CAS  Google Scholar 

  7. A. D. Nozdrachev and M. P. Chernysheva, Visceral Reflexes, LGU, Leningrad (1989).

    Google Scholar 

  8. A. A. Nurmatov, B. I. Tkachenko, A. V. Samoilenko, and A. A. Yurov, “Changes in systemic hemodynamics on exposure of the cooled body to hypoxia,” Ros. Fiziol. Zh., 63, No. 6, 808–814 (1987).

    Google Scholar 

  9. V. E. Parfenov, Transcranial Dopplerography: Dissert. Doct. Med. Sci., St. Petersburg (1996).

    Google Scholar 

  10. A. Yu. Rosin, Dopplerography of the Cerebral Vessels in Children, Prognoz St. Petersburg Med. Center, St. Petersburg (2000).

    Google Scholar 

  11. J. V. Andersson, V. Y. Liner, A. Fredsted, and K. A. Schagatay, “Cardiovascular and respiratory responses to apneas with and without face immersion in exercising humans,” J. Appl. Physiol., 96, 1005–1010 (2004).

    Article  PubMed  Google Scholar 

  12. H. Bode, Pediatric Applications of Transcranial Doppler Sonography, Springer-Verlag, Wien (1988).

    Book  Google Scholar 

  13. M. Buchheit, J. J. Peiffer, C. R. Abiss, and P. B. Laursen, “Effect of cold water immersion on postexercise parasympathetic reactivation,” Am. J. Physiol. Heart Circul. Physiol., 296, 421–427 (2009).

    Article  Google Scholar 

  14. H. V. Carey, M. T. Andrews, and S. L. Martin, “Mammalian hibernation: Cellular and molecular responses to depressed metabolism and low temperature,” Physiol. Rev., 83, 1153–1181 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. K. L. Drew, M. B. Harris, J. C. LaManna, et al., “Hypoxia tolerance in mammalian heterotherms,” J. Exp. Biol., 207, 3155–3162 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. J. M. Gidday, “Cerebral preconditioning and ischaemic tolerance,” Nat. Rev. Neurosci., 7, 437–448 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. M. Jeager, E. A. Hauth, H. M. Gissler, et al., “Angioplasty or stenting of extra- and intracranial vertebral artery stenoses,” Cardiovasc. Intervent. Radiol., 27, No. 1, 51–57 (2004).

    Google Scholar 

  18. F. Joulia, F. Lemaitre, P. Fontanari, et al., “Circulatory effects of apnoea in elite breath-hold divers,” Acta Physiol. Oxf., 197, No. 1, 75–82 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. T. Kjeld, F. C. Pott, and N. H. Secher, “Facial immersion in cold water enhances cerebral blood velocity during breath-hold exercise in humans,” J. Appl. Physiol., 106, 101–106 (2009).

    Article  Google Scholar 

  20. E. W. Lang, J. Lagopoulos, and J. Griffith, “Cerebral vasomotor reactivity testing in head injury: the link between pressure and flow,” Neurol. Neurosurg. Psychiatry, 74, 1053–1059 (2003).

    Article  CAS  Google Scholar 

  21. S. L. Mironov, K. Langohr, and D. W. Richter, “Hyperpolarizationactivated current, Ih, in inspiratory brainstem neurons and its inhibition by hypoxia,” Eur. J. Neurosci., 12, 520–526 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. S. M. Otis and E. B. Ringelstein, “Transcranial Doppler sonography,” in Introduction to Vascular Ultrasonography, W. L. Zwiebel (ed.), W. B. Sounders Co., Philadelphia (1992), pp. 145–171.

    Google Scholar 

  23. M. W. Panneton, Q. Gan, J. Le, et al., “Activation of brain-stem neurons by underwater diving in the rat,” Front. Physiol., 3, No. 111, 1–13 (2012).

    Google Scholar 

  24. J. M. Ramirez, L. P. Folkow, and A. Blix, “Hypoxia tolerance in mammals and birds: From the wildness to the clinic,” Annu. Rev. Physiol., 69, 113–143 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. E. K. Schagatay, J. P. A. Andersson, M. Hallen, and B. Palsson, “Physiological and genomic consequences of intermittent hypoxia selected contribution: Role of spleen emptying in prolonging apneas in humans,” J. Appl. Physiol., 90, 1623–1629 (2001).

    CAS  PubMed  Google Scholar 

  26. A. L. Schaefer, B. A. Young, and B. V. Turner, “The effects of cold exposure on bloodflow distribution in sheep,” Therm. Biol., 7, No. 1, 15–21 (1982).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. I. Baranova.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 100, No. 5, pp. 624–633, May, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baranova, T.I., Berlov, D.N. & Yanvareva, I.N. Changes in Cerebral Blood Flow on Performance of a Diving Reaction in Humans. Neurosci Behav Physi 46, 36–41 (2016). https://doi.org/10.1007/s11055-015-0195-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-015-0195-4

Keywords

Navigation