Skip to main content
Log in

Expression of Genes for Temperature-Sensitive TRP Channels in the Rat Hypothalamus in Normal Conditions and on Adaptation to Cold

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Quantitative RT-PCR was used to study the expression of genes for temperature-sensitive TRP (transient receptor potential) ion channels in the hypothalamus in control (kept for five weeks at +20 ± 22°C) and cold-adapted (five weeks at +4 ± 6°C) rats. We report the first observation of expression of the genes Trpv3 and Trpm8, evidencing the presence of TRPV3 and TRPM8 ion channels in the hypothalamus; the expression of the genes for six temperature-sensitive TRP ion channels (TRPA1, TRPM8, TRPV1, TRPV2, TRPV3, and TRPV4) was compared, and quite high levels of expression of the genes for temperature-sensitive ion channels activated at temperatures exceeding 30°C were noted, while the levels of expression of genes for cold-sensitive TRPM8 and TRPA1 were much lower; changes in the expression of the gene for TRPV3 channels due to cold adaptation were seen. This latter point supports the suggestion that temperature-sensitive TRP ion channels in the hypothalamus are involved in the mechanism of temperature adaptation at the genome level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. V. Kozyreva and F. K. Pirau, “Effects of cold adaptation and noradrenaline on the temperature sensitivity of hypothalamus neurons in rats,” Neirofiziologiya, No. 3, 171–176 (1994).

  2. T. V. Kozyreva and E. Ya. Tkachenko, “Effects of menthol on temperature sensitivity in humans,” Fiziol. Chel., No. 2, 99–103 (2008).

  3. V. C. Naumenko and A. V. Kulikov, “Assay of expression of the 5-HT1A serotonin receptor gene in the brain,” Molek. Biol., 39, No. 6, 1–8 (2005).

    Google Scholar 

  4. C. L. Prosser, Comparative Animal Physiology [Russian translation], Mir, Moscow (1977).

    Google Scholar 

  5. A. D. Slonim, Readings on Physiological Adaptations. Ecological Animal Physiology [in Russian], Nauka, Leningrad (1979).

    Google Scholar 

  6. D. M. Bautista, J. Siemens, and J. M. Glazer, “The menthol receptor TRPM8 is the principal detector of environmental cold,” Nature, 448, 204–208 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. J. A. Boulant, “Hypothalamic neurons. Mechanisms of sensitivity to temperature,” Ann. N.Y. Acad. Sci., 856, 108–115 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. S. Brauchi, G. Orta, M. Salazar, et al., “A hot-sensing cold receptor: C-terminal domain determines thermosensation in transient receptor potential channels,” J. Neurosci., 26, J. Neurosci., 18, 4835–4840 (2006).

    Article  Google Scholar 

  9. K. Brück and E. Zeisberger, “Adaptive changes in thermoregulation and their neuropharmacological basis,” in: Thermoregulation: Physiology and Biochemistry, E. Schönbaum and P. N. Y. Lomax (eds.), Pergamon Press, New York (1990), pp. 255–307.

    Google Scholar 

  10. M. J. Caterina, A. Leffler, A. B. Malmberg, et al., “Impaired nociception and pain sensation in mice lacking the capsaicin receptor,” Science, 288, 306–313 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. D. J. Cavanaugh, A. T. Chesler, A. C. Jackson, et al., “Trpv1 reporter mice reveal highly restricted brain distribution and functional expression in arteriolar smooth muscle cells,” J. Neurosci., 31, No. 13, 5067–5077 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. H. Eilers, S. Y. Lee, C. W. Hau, et al., “The rat vanilloid receptor splice variant VR.5’sv blocks TRPV1 activation,” Neuroreport, 18, No. 10, 969–973 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. I. Erler, D. M. Al-Ansary, U. Wissenbach, et al., “Trafficking and assembly of the cold-sensitive TRPM8 channel,” J. Biol. Chem., 281, No. 50, 38396–38404 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. A. Garami, E. Pakai, D. L. Oliveira, et al., “Thermoregulatory phenotype of the Trpv1 knockout mouse: Thermoeffector dysbalance with hyperkinesis,” J. Neurosci., 31, 1721–1733 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. N. R. Gavva, A. W. Bannon, D. N. Hovland, et al., “Repeated administration of vanilloid receptor TRPV1 antagonists attenuates hyperthermia elicited by TRPV1 blockade,” J. Pharmacol. Exp. Ther., 323, No. 1, 128–137 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. A. D. Guler, H. Lee, and T. Iida, et al., “Heat-evoked activation of the ion channel TRPV4,” Neuroscience, 22, No. 15, 6408–6414 (2002).

    CAS  PubMed  Google Scholar 

  17. J. S. Hart, “Insulative and metabolic adaptations to cold in vertebrates,” Symp. Soc. Exp. Biol., 18, 31–48 (1964).

    CAS  PubMed  Google Scholar 

  18. H. Hensel, “Thermoreceptors,” Annu. Rev. Physiol., 36, 233–249 (1974).

    Article  CAS  PubMed  Google Scholar 

  19. S. E. Jordt, D. M. Bautista, H. H. Chuang, et al., “Mustard oils and cannabinoids excite sensory nerve fibers through the TRP channel ANKTM1,” Nature, 427, No. 6971, 260–265 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. S. E. Jordt, D. D. McKemy, and D. Julius, “Lessons from peppers and peppermint: the molecular logic of thermosensation,” Curr. Opin. Neurobiol., 13, No. 4, 487–492 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. I. Kojima and M. Nagasawa, “TRPV2: A calcium-permeable cation channel regulated by insulin-like growth factors,” in: TRP Ion Channel Function in Sensory Transduction and Cellular Signaling Cascades, W. B. Liedtke and S. Heller (eds.), CRC Press, Boca Raton, FL (2007), www.ncbi.nlm.nih.gov/books/NBK5254/.

    Google Scholar 

  22. T. V. Kozyreva, “Neurophysiological aspects of the long-term adaptation to cold in mammals: The role of central and peripheral thermoreceptors,” J. Thermal Biol., 31, 105–114 (2006).

    Article  CAS  Google Scholar 

  23. T. V. Kozyreva,V. P. Kozaruk, E. Ya. Tkachenko, and G. M. Khramova, “Agonist of TRPM8 channel, menthol, facilitates the initiation of thermoregulatory responses to external cooling,” J. Thermal Biol., 35, 428–434 (2010).

    Article  CAS  Google Scholar 

  24. A. V. Kulikov, A. S. Naumenko, I. P. Voronova, et al., “Quantitative RT-PCR assay of 5-HT1A and 5-HT2A serotonin receptor mRNAs sing genomic DNA as an external standard,” J. Neurosci. Methods, 141, No. 1, 97–101 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. H. Lee, T. Iida, A. Mizuno, et al., “Altered thermal selection behavior in mice lacking transient receptor potential vanilloid 4,” J. Neurosci., 25, 1304–1310 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. A. Liapi and J. N. Wood, “Extensive co-localization and heteromultimer formation of the vanilloid receptor-like protein TRPV2 and the capsaicin receptor TRPV1 in the adult rat cerebral cortex,” J. Neurosci., 22, No. 4, 825–834 (2005).

    Article  Google Scholar 

  27. A. Malkia, R. Madrid, V. Meseguer, et al., “Bidirectional shifts of TRPM8 channel gating by temperature and chemical agents modulate the cold sensitivity of mammalian thermoreceptors,” J. Physiol., 581, 155–174 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Y. Masamoto, F. Kawabata, and T. Fushiki, “Intragastric administration of TRPV1, TRPV3, TRPM8, and TRPA1 agonists modulates autonomic thermoregulation in different manners in mice,” Biosci. Biotechnol. Biochem., 73, 1021–1027 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. D. D. McKemy, “How cold is it? TRPM8 and TRPA1 in the molecular logic of cold,” Mol. Pain, 1, No. 1, 16–22 (2005).

    Article  PubMed Central  PubMed  Google Scholar 

  30. D. D. McKemy, W. M. Neuhausser, and D. Julius, “Identification of a cold receptor reveals a general role for TRP channels in thermosensation,” Nature, 416, No. 6876, 52–58 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. A. Mogrich, S. W. Hwang, T. J. Earley, et al., “Impaired thermosensation mice lacking TRPV3, a heat and camphor senor in the skin,” Science, 307, 1468–1472 (2005).

    Article  Google Scholar 

  32. T. Nakayama, J. S. Eisenman, and J. D. Hardy, “Single unit activity of anterior hypothalamus during local heating,” Science, 134, No. 3478, 560–561 (1961).

    Article  CAS  PubMed  Google Scholar 

  33. U. Park, N. Vastani,Y. Guan, et al., “TRP vanilloid 2 knock-out mice are susceptible to perinatal lethality but display normal thermal and mechanical nociception,” J. Neurosci., 31, No. 32, 11425–11436 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. A. Patapoutian, A. M. Peier, G. M. Storey, and V. Viswanath, “Thermo-TRP channels and beyond: mechanisms of temperature sensation,” Neuroscience, 4, No. 7, 529–539 (2003).

    CAS  PubMed  Google Scholar 

  35. C. B. Phelps and R. Gaudet, “The role of the N-terminus and transmembrane domain of TRPM8 in channel localization and tetramerization,” J. Biol. Chem., 282, No. 50, 36474–36480 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. I. S. Ramsey, M. Delling, and D. E. Clapham, “An introduction to TRP channels,” Annu. Rev. Physiol., 68, 619–647 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. M. A. Schumacher, I. Moff, S. P. Sudanagunta, and J. D. Levine, “Molecular cloning of an N-terminal splice variant of the capsaicin receptor. Loss of N-terminal domain suggests functional divergence among capsaicin receptor subtypes,” J. Biol. Chem., 275, No. 4, 2756–2762 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. K. Shibasaki, M. Murayama, K. Ono, et al., “TRPV2 enhances axon outgrowth through its activation by membrane stretch in developing sensory and motor neurons,” J. Neurosci., 30, No. 13, 4601–4612 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. H. W. Steenland, W. K. Ko, L. J. Wu, and M. Zhuo, “Hot receptors in the brain,” Mol. Pain, 2, 34 (2006).

    Article  PubMed Central  PubMed  Google Scholar 

  40. M. Suzuki, J. Sato, K. Kutsuwada, et al., “Cloning of a stretchinhibitable nonselective cation channel,” J. Biol. Chem., 274, No. 10, 6330–6335 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. K. Tajino, K. Matsumara, K. Kosada, et al., “Application of menthol to the skin of whole trunk in mice induces autonomic and behavioral heat-gain responses,” Am. J. Physiol. Regul. Integr. Comp. Physiol., 293, 2128–2135 (2007).

    Article  Google Scholar 

  42. W. Tian,Y. Fu, D. H. Wang, and D. M. Cohen, “Regulation of TRPV1 by a novel renally expressed rat TRPV1 splice variant,” J. Physiol. Renal. Physiol., 290, No. 1, 117–126 (2006).

    Article  Google Scholar 

  43. F. Viana, E. de la Pena, and C. Belmonte, “Specificity of thermotransduction is determined by differential ionic channel expression,” Nature Neurosci., 5, 254–260 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. I. P. Voronova, A. V. Kulikov, N. K. Popova, and T. V. Kozyreva, “Expression of the 1a and 2a serotonin receptor genes in the brain of rats adapted to warm and cold,” J. Thermal Biol., 32, 188–192 (2007).

    Article  CAS  Google Scholar 

  45. A. Wainwright, A. R. Rutter, G. R. Seabrook, et al., “Discrete expression of TRPV2 within the hypothalamo-neurohypophyseal system: implications for regulatory activity within the hypothalamic-pituitary-adrenal axis,” J. Comp. Neurol., 474, 24–42 (2004).

    Article  PubMed  Google Scholar 

  46. T. Watanabe, A. Morimoto, and N. Murakami, “Effect of amine on temperature-responsive neurons in slice preparation of rat brain stem,” Am. J. Physiol., 250, 553–559 (1986).

    Google Scholar 

  47. M. Wechselberger, C. L. Wright, G. A. Bishop, and J. A. Boulant, “Ion channels and conductance-based models for hypothalamic neuronal thermosensitivity,” Am. J. Physiol. Regul. Integr. Comp. Physiol., 291, 518–529 (2006).

    Article  Google Scholar 

  48. T. Yokoyama, T. Ohbuchi, T. Saito, et al., “Allyl isothiocyanates and cinnamaldehyde potentiate miniature excitatory postsynaptic inputs in the supraoptic nucleus in rats,” Eur. J. Pharmacol., 655, No. 1–3, 31–37 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Voronova.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 98, No. 9, pp. 1101–1110, September, 2012.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voronova, I.P., Tuzhikova, A.A. & Kozyreva, T.V. Expression of Genes for Temperature-Sensitive TRP Channels in the Rat Hypothalamus in Normal Conditions and on Adaptation to Cold. Neurosci Behav Physi 44, 565–570 (2014). https://doi.org/10.1007/s11055-014-9952-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-014-9952-z

Keywords

Navigation