Behavioral choice is known to depend on context, i.e., a variety of internal and external factors: previous experience, behavioral state, presence of food, etc. How is the totality of factors determining behavioral choice translated at the cellular level? This review presents neuroethological data providing evidence that context is expressed at the neurological level in terms of the composition of neuroactive molecules in the extracellular milieu, controlling the functioning of the corresponding neuron ensembles.
Similar content being viewed by others
References
P. M. Balaban and I. S. Zakharov, Learning and Development: A Common Basis for Two Phenomena [in Russian], Nauka, Moscow (1992).
V. Ya. Brodskii, “Direct intercellular interactions and ‘social’ behavior of cells in mammals, protists, and bacteria. Possible causes of multicellularity,” Ontogenez, 40, 97–111 (2009).
G. A. Buznikov, “Donor transmitters as regulators of embryogenesis. Current state of this question,” Ontogenez, 38, No. 4, 262–270 (2007).
V. E. D’yakonova, “Behavioral effects of octopamine and serotonin: some paradoxes in comparative physiology,” Usp. Fiziol. Nauk., 38, No. 3, 3–20 (2007).
V. E. D’yakonova, Context-Dependent Behavioral Choice: Neurotransmitter Mechanisms: Dissert. Doct. Biol. Sci., Institute of Developmental Biology, Russian Academy of Sciences, Moscow (2011).
V. E. D’yakonova and D. A. Sakharov, “Involvement of the endogenous opioid system in regulating feeding and defensive behavior in a mollusk,” Zh. Vyssh. Nerv. Deyat., 44, 316–322 (1994).
V. E. D’yakonova and D. A. Sakharov, “The neurotransmitter basis of behavior in a mollusk: control of choice between an orientational and a defensive response to presentation of an unfamiliar object,” Zh. Vyssh. Nerv. Deyat., 44, 526–531 (1994).
V. E. D’yakonova and D. A. Sakharov, “The isolated serotoninergic neuron: the level of neurotransmitter synthesis affects spike activity,” Dokl. Ros. Akad. Nauk., 376, No. 2, 267–270 (2001).
V. E. D’yakonova and A. L. Krushinskii, “Increases in sexual behavior and aggressivity in crickets after flight,” Dokl. Ros. Akad. Nauk., 390, No. 5, 709–712 (2003).
V. E. D’yakonova and A. L. Krushinskii, “Effects of an NO synthase inhibitor on aggressive and sexual behavior in crickets,” Ros. Fiziol. Zh., 91, No. 6, 616–624 (2005).
O. A. Maksimova and P. M. Balaban, Neuronal Mechanisms of Behavioral Plasticity [in Russian], Nauka, Moscow (1983).
G. A. Pavlova, “Effects of serotonin on locomotion in the freshwater mollusk Lymnaea stagnalis,” Zh. Evolyuts. Biokhim. Fiziol., 33, No. 6, 599–606 (1997).
D. A. Sakharov and E. A. Kabotyanskii, “Integration of behavior in a pteropod mollusk with dopamine and serotonin,” Zh. Obshch. Biol., 47, 234–245 (1986).
D. A. Sakharov, “The integrative function of serotonin in primitive Metazoa,” Zh. Obshch. Biol., 51, 437–449 (1990).
D. A. Sakharov, “Neurotransmitter multiplicity: functional significance,” Zh. Evolyuts. Biokhim. Fiziol., 2, No. 5, 733–741 (1990).
D. A. Sakharov, “Mechanism of introduction of order into the output activity of neuron ensembles,” in: Current Questions in Neurobiology, Neuroinformatics, and Cognitive Studies [in Russian], National Research Nuclear University, Moscow Engineering Physics Institute, Moscow (2010), pp. 7–28.
V. V. Tsyganov and D. A. Sakharov, “Serotonin-dependent subordination of the respiratory rhythm to the central locomotion generator in the pulmonate mollusk Lymnaea,” Dokl. Ros. Akad. Nauk., 382, No. 4, 554–556 (2002).
I. A. Chistopol’skii and D. A. Sakharov, “Activation of serotoninergic neurons by the metabolic precursor of serotonin: the effect of a tryptophan decarboxylase inhibitor,” Dokl. Ros. Akad. Nauk., 372, 129–131 (2000).
S. A. Adamo, C. E. Linn, and R. R. Hoyle, “The role of neurohormonal octopamine during ‘fight or flight’ behaviour in the field cricket Gryllus bimaculatus,” J. Exp. Biol., 198, 1691–1700 (1995).
M. Alania, V. Dyakonova, and D. A. Sakharov, “Hyperpolarization by glucose of feeding related neurons in snail,” Acta Biol. Hung., 55, 195–200 (2004).
M. L. Anstey, S. M. Rogers, S. R. Ott, et al., “Serotonin mediates behavioral generalization underlying swarm formation in desert locusts,” Science, 323, No. 5914, 627–630 (2009).
N. Baganz, R. Horton, K. Martin, et al., “Repeated swim impairs serotonin clearance via a corticosterone-sensitive mechanism: organic cation transporter 3, the smoking gun,” J. Neurosci., 30, 15185–15195 (2010).
J. Ben Arous, S. Laffont, and D. Chatenay, “Molecular and sensory basis of a food related two-state behavior in C. elegans,” PLoS One, 4, No. 10, e7584 (2009).
K. L. Briggeman and W. B. Kristan, Jr., “Imaging dedicated and multifunctional neural circuits generating distinct behaviors,” J. Neurosci., 26, No. 42, 10925–10933 (2006).
D. Cattaert, J. P. Delbecque, D. H. Edwards, and F. A. Issa, “Social interactions determine postural network sensitivity to 5-HT,” J. Neurosci., 30, No. 16, 5603–5616 (2010).
S. J. Certel, A. Leung, C. Y. Lin, et al., “Octopamine neuromodulatory effects on a social behavior decision-making network in Drosophila males,” PLoS One, 5, No. 10, e13248 (2010).
S. J. Certel, M. G. Savella, D. C. Schlegel, and E. A. Kravitz, “Modulation of Drosophila male behavioral choice,” Proc. Natl. Acad. Sci. USA, 104, No. 11, 4706–4711 (2007).
I. A. Chistopolsky and D. A. Sakharov, “Non-synaptic integration of neuron somata in the snail CNS,” Neurosci. Behav. Physiol., 33, 295–300 (2003).
W. J. Davis, G. J. Mpitsos, M. V. S. Siegler, et al., “Neuronal substrates of behavioral hierarchies and associative learning in pleurobranchaea,” Amer. Zool., 14, 1037–1050 (1974).
P. F. Dominey and D. Boussaoud, “Encoding behavioral context in recurrent networks of the fronto-striatal system: a simulation study,” Brain Res. Cogn. Brain Res., 5, 53–65 (1997).
V. E. Dyakonova, I. A. Chistopolsky, T. L. Dyakonova, et al., “Direct and decarboxylation-dependent effects of neurotransmitter precursors on firing of isolated monoaminergic neurons,” J. Comp. Physiol., A195, No. 6, 515–527 (2009).
V. E. Dyakonova and A. L. Krushinsky, “Previous motor experience enhances courtship behavior in male cricket Gryllus bimaculatus,” J. Insect Behav., 21, 172–180 (2008).
V. E. Dyakonova, D. A. Sakharov, and F.-W. Schuermann, “Effects of serotonergic and opioidergic drugs on escape behavior and social status of male crickets,” Naturwissenschaften, 86, 435–437 (1999).
D. H. Edwards and E. A. Kravitz, “Serotonin, social status and aggression,” Curr. Opin. Neurobiol., 6, 812–829 (1997).
D. H. Edwards, S. R. Yeh, B. E. Musulf, et al., “Metamodulation of the crayfish escape circuit,” Brain Behav. Evol., 60, No. 6, 360–669 (2002).
W. O. Friesen and W. B. Kristan, “Leech locomotion: swimming, crawling, and decisions,” Curr. Opin. Neurobiol., 17, No. 6, 704–711 (2007).
Q. Gaudry and W. B. Kirstan, Jr., “Behavioral choice by presynaptic inhibition of tactile sensory terminals,” Nat. Neurosci., 12, No. 11, 1450–1457 (2009).
Q. Gaudry, N. Ruiz, T. Huang, et al., “Behavioral choice between species: chacun à son goût,” J. Exp. Biol., 213, 1356–1365 (2010).
D. L. Glanzman and F. B. Krasne, “Serotonin and octopamine have opposite modulatory effects on the crayfish’s lateral giant escape reaction,” J. Neurosci., 11, 2263–2269 (1983).
D. L. Glanzman and F. B. Krasne, “5,7-Dihydroxytryptamine lesions of crayfish serotonin-containing neurons: effect of the lateral giant escape reaction,” J. Neurosci., 6, 1560–1569 (1986).
R. S. Goldstein and J. M. Camhi, “Different effects of the biogenic amines dopamine, serotonin and octopamine on the thoracic and abdominal portions of the escape circuit in the cockroach,” J. Comp. Physiol., A168, 103–112 (1991).
E. Hara, L. Kubikova, N. A. Nessler, and E. D. Jarvis, “Assessing visual requirements for social context-dependent activation of the songbird song system,” Proc Biol. Sci., 276, No. 1655, 279–289 (2009).
M. E. Hasselmo and H. Eichenbaum, “Hippocampal mechanisms for the context-dependent retrieval of episodes,” Neural Netw., 9, 1172–1190 (2005).
N. G. Hatcher, X. Zhang, J. N. Stuart, et al., “5-HT and 5-HT-SO4, but not tryptophan or 5-HIAA levels in single feeding neurons track animal hunger state,” J. Neurochem., 104, No. 5, 1358–1363 (2008).
J. Herberholz, C. McCurdy, and D. H. Edwards, “Direct benefits of social dominance in juvenile crayfish,” Biol. Bull., 213, No. 1, 21–27 (2007).
L. Hernádi, L. Hiripi, V. Dyakonova, et al., “The effect of food intake on the central monoaminergic system in the snail, Lymnaea stagnalis,” Acta Biol. Hung., 55, No. 1–4, 185–194 (2004).
H. A. Hofmann and P. A. Stevenson, “Flight restores fight in crickets,” Nature, 403, 613 (2000).
H. R. Horvitz, M. Chalfie, C. Trent, et al., “Serotonin and octopamine in the nematode Caenorhabditis elegans,” Science, 216, 1012–1014 (1982).
R. Huber, M. Orzeszyna, N. Pokorny, and E. A. Kravitz, “Biogenic amines and aggression: experimental approaches in crustaceans,” Brain Behav. Evol., 50, Supplement 1, 60–68 (1997).
R. Huber, K. Smith, A. Delago, et al., “Serotonin and aggressive motivation in crustaceans: altering the decision to retreat,” Proc. Natl. Acad. Sci. USA, 94, No. 11, 5939–5942 (1997).
M. D. Humphries, K. Gurney, and T. J. Prescott, “Is there a brainstem substrate for action selection?” Phil. Trans. Roy. Soc., B362, 1627–1639 (2007).
E. A. Kabotyanski, W. Winlow, D. A. Sakharov, et al., Soc. Neurosi. Abstr., 18, 531 (1992).
N. M. Kalberer, C. E. Riesenman, and J. G. Hildebrand, “Male moths bearing transplanted female antennae express characteristically female behaviour and central neural activity,” J. Exp. Biol., 213, 1272–1280 (2010).
F. B. Krasne, A. Shamsian, and R. Kulkarni, “Altered excitability of the crayfish lateral giant escape reflex during agonistic encounters,” J. Neurosci., 17, No. 2, 709–716 (1997).
E. A. Kravitz, “Hormonal control of vehicle: amines and the biasing of behavioural output in lobsters,” Science, 241, No. 4874, 1775–1781 (1988).
E. A. Kravitz, “Serotonin and aggression: insights gained from a lobster model system and speculations on the role of amine neurons in a complex behavior,” J. Comp. Physiol., A186, No. 3, 221–238 (2000).
E. A. Kravitz, S. Glusman, R. M. Harris-Warrick, et al., “Amines and a peptide as neurohormones in lobsters: actions on neuromuscular preparations and preliminary behavioural studies,” J. Exp. Biol., 89, 159–175 (1980).
A. Leblois, B. J. Wendel, and D. J. Perkel, “Striatal dopamine modulates basal ganglia output and regulates social context-dependent behavioral variability through D1 receptors,” J. Neurosci., 30, No. 16, 5730–5743 (2010).
C. M. Lent and M. H. Dickinson, “The neurobiology of feeding in leeches,” Sci. Am., 258, No. 6, 98–103 (1988).
W. H. Liden and J. Herberholz, “Behavioral and neural responses of juvenile crayfish to moving shadows,” J. Exp. Biol., 211, 1355–1361 (2008).
W. H. Liden, M. L. Phillips, and J. Herberholz, “Neural control of behavioural choice in juvenile crayfish,” J. Proc. Biol. Sci., 277, No. 1699, 3493–3500 (2010).
M. S. Livingstone, R. M. Harris-Warrick, and E. A. Kravitz, “Serotonin and octopamine produce opposite postures in lobsters,” Science, 208, No. 443, 76–79 (1980).
S. Luedtke,V. O’Connor, L. Holden-Dye, and R. J. Walker, “The regulation of feeding and metabolism in response to food deprivation in Caenorhabditis elegans,” Invert. Neurosci., 10, No. 2, 63–76 (2010).
K. A. Mesce, “Metamodulation of the biogenic amines: second-order modulation by steroid hormones and amine cocktails,” Brain Behav. Evol., 60, No. 6, 339–349 (2002).
S. Murakami and M. T. Itoh, “Effects of aggression and wing removal on brain serotonin levels in male crickets, Gryllus bimaculatus,” J. Insect Physiol., 47, No. 11, 1309–1312 (2001).
S. Murakami and M. T. Itoh, “Removal of both antennae influences the courtship and aggressive behaviors in male crickets,” J. Neurobiol., 57, No. 1, 110–118 (2003).
H. Neumeister, K. W. Whitaker, H. A. Hofmann, and T. Preuss, “Social and ecological regulation of a decision-making circuit,” J. Neurophysiol., 104, No. 6, 3180–3188 (2010).
R. G. Oldfield and H. A. Hofmann, “Neuropeptide regulation of social behavior in the monogamous cichlid fish,” Physiol. Behav., 102, No. 3–4, 296–303 (2011).
R. F. Oliveira, A. Silva, and A. V. Canário, “Why do winners keep winning? Androgen mediation of winner but not loser effects in cichlid fish,” Proc. Biol. Sci., 276, No. 1665, 2249–2256 (2009).
S. B. Ostlund, K. M. Wassum, N. P. Murphy, et al., “Extracellular dopamine levels in striatal subregions track shifts in motivation and response cost during instrumental conditioning,” J. Neurosci., 31, 200–207 (2011).
S. R. Ott and S. M. Rogers, “Gregarious desert locusts have substantially larger brains with altered proportions compared with the solitarious phase,” Proc. Biol. Sci., 277, No. 1697, 3087–3096 (2010).
R. Perrone, G. Batista, D. Lorenzo, et al., “Vasotocin actions on electric behavior: interspecific, seasonal, and social context-dependent differences,” Front. Behav. Neurosci., 4, 52, (2010).
H.-J. Pueger and P. A. Stevenson, “Evolutionary aspects of octopaminergic systems with emphasis on arthropods,” Arthropod Structure and Development, 34, 379–396 (2005).
J. G. Puhl and K. A. Mesce, “Dopamine activates the motor pattern for crawling in the medicinal leech,” J. Neurosci., 28, No. 16, 4192–4200 (2008).
L. Quintana, P. Pouso, G. Fabbiani, and O. Macadar, “A central pacemaker that underlies the production of seasonal and sexually dimorphic social signals: anatomical and electrophysiological aspects,” J. Comp. Physiol., A197, No. 1, 75–88 (2011).
R. Ranganathan, S. C. Cannon, and H. R. Horvitz, “MOD-1 is a serotonin-gated chloride channel that modulates locomotory behaviour in C. elegans,” Nature, 408, No. 6811, 470–475 (2000).
S. C. Renn, N. Aubin-Horth, and H. A. Hofmann, “Fish and chips: functional genomics of social plasticity in an African cichlid fish,” J. Exp. Biol., 211, 3041–3056 (2008).
J. Rillich, I. Schildberger, and P. A. Stevenson, “Octopamine and occupancy: an aminergic mechanism for intruder-resident aggression in crickets,” Proc. Biol. Sci., 278, No. 1713, 1873–1880 (2011).
S. M. Rogers, T. Matheson, K. Sasaki, et al., “Substantial changes in central nervous system neurotransmitters and neuromodulators accompany phase change in the locust,” J. Exp. Biol., 207, 3603–3617 (2004).
D. A. Sakharov, “Integrative function of serotonin common to distantly related invertebrate animals,” in: The Early Brain, M. Gustaffson and M. Reuter (eds.), Abo Akad. Press, Abo (1990), pp. 73–88.
P. Salmon, “Effects of physical exercise on anxiety, depression, and sensitivity to stress: a unifying theory,” Clin. Psychol. Rev., 21, 33–61 (2001).
M. Sarter, V. Parikh, and W. M. Howe, “Phasic acetylcholine release and going to volume transmission hypothesis: time to move on,” Nat. Rev. Neurosci., 10, No. 5, 383–390 (2009).
A. Sasaki, T. D. Sotnikova, R. R. Gainetdinov, and E. D. Jarvis, “Social context-dependent singing-regulated dopamine,” J. Neurosci., 26, No. 35, 9010–9014 (2006).
E. R. Sawin, R. Ranganathan, and H. R. Horvitz, “C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway,” Neuron, 26, No. 3, 619–631 (2000).
A. M. Schneiderman, J. G. Hildebrand, M. M. Brennan, and J. H. Tumlinson, “Trans-sexually grafted antennae alter pheromone-directed behaviour in a moth,” Nature, 323, No. 6091, 801–803 (1986).
L. U Sneddon, A. C. Taylor, F. A. Huntingford, and D. G. Watson, “Agonistic behaviour and biogenic amines in shore crabs Carcinus maenas,” J. Exp. Biol., 203, 537–544 (2000).
B. Song and L. Avery, “Serotonin activates overall feeding by activating two separate neural pathways in Caenorhabditis elegans,” J. Neurosci., 32, No. 6, 1920–1931 (2012).
C. K. Song, J. Herberholz, and D. H. Edwards, “The effects of social experience on the behavioral response to unexpected touch in crayfish,” J. Exp. Biol., 209, 1355–1363 (2006).
K. Staras, I. Kemenes, P. R. Benjamin, and G. Kemenes, “Loss of self-inhibition is a cellular mechanism for episodic rhythmic behavior,” Curr. Biol., 13, No. 2, 116–124 (2003).
P. A. Stevenson, V. E. Dyakonova, J. Rillich, and K. Schildberger, “Octopamine and experience-dependent modulation of aggression in crickets,” J. Neurosci., 25, No. 6, 1431–1441 (2005).
P. A. Stevenson, H. A. Hofmann, K. Schoch, and K. Schildberger, “The fight and flight responses of crickets depleted of biogenic amines,” J. Neurobiol., 43, 107–120 (2000).
H. K. Struder and H. Weicker, “Physiology and pathophysiology of the serotonergic system and its implications on mental and physical performance,” Int. J. Sports Med., 7, 482–497 (2001).
S. Suo, Y. Kimura, and H. H. Van Tol, “Starvation induces cAMP response element-binding protein-dependent gene expression through octopamine-Gq signaling in Caenorhabditis elegans,” J. Neurosci., 26, No. 40, 10082–10090 (2006).
E. Syková and C. Nicholson, “Diffusion in brain extracellular space,” Physiol. Rev., 88, No. 4, 1277–1340 (2008).
B. C. Trainor and H. A. Hofmann, “Somatostatin regulates aggressive behavior in an African cichlid fish,” Endocrinology, 147, No. 11, 5119–5125 (2006).
E. E. Voronezhskaya, M. Yu. Khabarova, and L. P. Nezlin, “Apical sensory neurones mediate developmental retardation induced by conspecific environmental stimuli in freshwater pulmonate snails,” Development, 131, 3671–3680 (2004).
E. E. Voronezhskaya, K. I. Glebov, M. Y. Khabarova, et al., “Adult-toembryo chemical signaling in the regulation of larval development in trochophore animals: cellular and molecular mechanisms,” Acta Biol. Hung., 59, Supplement, 117–122 (2008).
L. S. Yafremava, C. W. Anthony, L. Lane, et al., “Orienting and avoidance turning are precisely computed by the predatory sea slug Pleurobranchaea californica McFarland,” J. Exp. Biol., 210, 561–569 (2007).
S.-R. Yeh, R. A. Fricke, and D. H. Edwards, “The effect of social experience on serotonergic modulation of the escape circuit of crayfish,” Science, 271, 366–369 (1996).
S.-R. Yeh, B. E. Musolf, and D. H. Edwards, “Neuronal adaptations to changes in the dominance status of crayfish,” J. Neurosci., 17, 697–708 (1997).
Author information
Authors and Affiliations
Corresponding author
Additional information
Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 62, No. 6, pp. 664–680, November–December, 2012.
Rights and permissions
About this article
Cite this article
D’yakonova, V.E. Neurotransmitter Mechanisms of Context-Dependent Behavior. Neurosci Behav Physi 44, 256–267 (2014). https://doi.org/10.1007/s11055-014-9905-6
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11055-014-9905-6