Skip to main content
Log in

Neurotransmitter Mechanisms of Context-Dependent Behavior

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Behavioral choice is known to depend on context, i.e., a variety of internal and external factors: previous experience, behavioral state, presence of food, etc. How is the totality of factors determining behavioral choice translated at the cellular level? This review presents neuroethological data providing evidence that context is expressed at the neurological level in terms of the composition of neuroactive molecules in the extracellular milieu, controlling the functioning of the corresponding neuron ensembles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. M. Balaban and I. S. Zakharov, Learning and Development: A Common Basis for Two Phenomena [in Russian], Nauka, Moscow (1992).

    Google Scholar 

  2. V. Ya. Brodskii, “Direct intercellular interactions and ‘social’ behavior of cells in mammals, protists, and bacteria. Possible causes of multicellularity,” Ontogenez, 40, 97–111 (2009).

  3. G. A. Buznikov, “Donor transmitters as regulators of embryogenesis. Current state of this question,” Ontogenez, 38, No. 4, 262–270 (2007).

    CAS  PubMed  Google Scholar 

  4. V. E. D’yakonova, “Behavioral effects of octopamine and serotonin: some paradoxes in comparative physiology,” Usp. Fiziol. Nauk., 38, No. 3, 3–20 (2007).

    Google Scholar 

  5. V. E. D’yakonova, Context-Dependent Behavioral Choice: Neurotransmitter Mechanisms: Dissert. Doct. Biol. Sci., Institute of Developmental Biology, Russian Academy of Sciences, Moscow (2011).

  6. V. E. D’yakonova and D. A. Sakharov, “Involvement of the endogenous opioid system in regulating feeding and defensive behavior in a mollusk,” Zh. Vyssh. Nerv. Deyat., 44, 316–322 (1994).

    Google Scholar 

  7. V. E. D’yakonova and D. A. Sakharov, “The neurotransmitter basis of behavior in a mollusk: control of choice between an orientational and a defensive response to presentation of an unfamiliar object,” Zh. Vyssh. Nerv. Deyat., 44, 526–531 (1994).

    Google Scholar 

  8. V. E. D’yakonova and D. A. Sakharov, “The isolated serotoninergic neuron: the level of neurotransmitter synthesis affects spike activity,” Dokl. Ros. Akad. Nauk., 376, No. 2, 267–270 (2001).

    Google Scholar 

  9. V. E. D’yakonova and A. L. Krushinskii, “Increases in sexual behavior and aggressivity in crickets after flight,” Dokl. Ros. Akad. Nauk., 390, No. 5, 709–712 (2003).

    Google Scholar 

  10. V. E. D’yakonova and A. L. Krushinskii, “Effects of an NO synthase inhibitor on aggressive and sexual behavior in crickets,” Ros. Fiziol. Zh., 91, No. 6, 616–624 (2005).

    Google Scholar 

  11. O. A. Maksimova and P. M. Balaban, Neuronal Mechanisms of Behavioral Plasticity [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  12. G. A. Pavlova, “Effects of serotonin on locomotion in the freshwater mollusk Lymnaea stagnalis,” Zh. Evolyuts. Biokhim. Fiziol., 33, No. 6, 599–606 (1997).

    Google Scholar 

  13. D. A. Sakharov and E. A. Kabotyanskii, “Integration of behavior in a pteropod mollusk with dopamine and serotonin,” Zh. Obshch. Biol., 47, 234–245 (1986).

    CAS  Google Scholar 

  14. D. A. Sakharov, “The integrative function of serotonin in primitive Metazoa,” Zh. Obshch. Biol., 51, 437–449 (1990).

    CAS  Google Scholar 

  15. D. A. Sakharov, “Neurotransmitter multiplicity: functional significance,” Zh. Evolyuts. Biokhim. Fiziol., 2, No. 5, 733–741 (1990).

    Google Scholar 

  16. D. A. Sakharov, “Mechanism of introduction of order into the output activity of neuron ensembles,” in: Current Questions in Neurobiology, Neuroinformatics, and Cognitive Studies [in Russian], National Research Nuclear University, Moscow Engineering Physics Institute, Moscow (2010), pp. 7–28.

  17. V. V. Tsyganov and D. A. Sakharov, “Serotonin-dependent subordination of the respiratory rhythm to the central locomotion generator in the pulmonate mollusk Lymnaea,” Dokl. Ros. Akad. Nauk., 382, No. 4, 554–556 (2002).

    Google Scholar 

  18. I. A. Chistopol’skii and D. A. Sakharov, “Activation of serotoninergic neurons by the metabolic precursor of serotonin: the effect of a tryptophan decarboxylase inhibitor,” Dokl. Ros. Akad. Nauk., 372, 129–131 (2000).

    Google Scholar 

  19. S. A. Adamo, C. E. Linn, and R. R. Hoyle, “The role of neurohormonal octopamine during ‘fight or flight’ behaviour in the field cricket Gryllus bimaculatus,” J. Exp. Biol., 198, 1691–1700 (1995).

    CAS  PubMed  Google Scholar 

  20. M. Alania, V. Dyakonova, and D. A. Sakharov, “Hyperpolarization by glucose of feeding related neurons in snail,” Acta Biol. Hung., 55, 195–200 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. M. L. Anstey, S. M. Rogers, S. R. Ott, et al., “Serotonin mediates behavioral generalization underlying swarm formation in desert locusts,” Science, 323, No. 5914, 627–630 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. N. Baganz, R. Horton, K. Martin, et al., “Repeated swim impairs serotonin clearance via a corticosterone-sensitive mechanism: organic cation transporter 3, the smoking gun,” J. Neurosci., 30, 15185–15195 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. J. Ben Arous, S. Laffont, and D. Chatenay, “Molecular and sensory basis of a food related two-state behavior in C. elegans,” PLoS One, 4, No. 10, e7584 (2009).

    Article  PubMed Central  PubMed  Google Scholar 

  24. K. L. Briggeman and W. B. Kristan, Jr., “Imaging dedicated and multifunctional neural circuits generating distinct behaviors,” J. Neurosci., 26, No. 42, 10925–10933 (2006).

    Article  Google Scholar 

  25. D. Cattaert, J. P. Delbecque, D. H. Edwards, and F. A. Issa, “Social interactions determine postural network sensitivity to 5-HT,” J. Neurosci., 30, No. 16, 5603–5616 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. S. J. Certel, A. Leung, C. Y. Lin, et al., “Octopamine neuromodulatory effects on a social behavior decision-making network in Drosophila males,” PLoS One, 5, No. 10, e13248 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  27. S. J. Certel, M. G. Savella, D. C. Schlegel, and E. A. Kravitz, “Modulation of Drosophila male behavioral choice,” Proc. Natl. Acad. Sci. USA, 104, No. 11, 4706–4711 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. I. A. Chistopolsky and D. A. Sakharov, “Non-synaptic integration of neuron somata in the snail CNS,” Neurosci. Behav. Physiol., 33, 295–300 (2003).

    Article  Google Scholar 

  29. W. J. Davis, G. J. Mpitsos, M. V. S. Siegler, et al., “Neuronal substrates of behavioral hierarchies and associative learning in pleurobranchaea,” Amer. Zool., 14, 1037–1050 (1974).

    Google Scholar 

  30. P. F. Dominey and D. Boussaoud, “Encoding behavioral context in recurrent networks of the fronto-striatal system: a simulation study,” Brain Res. Cogn. Brain Res., 5, 53–65 (1997).

    Article  Google Scholar 

  31. V. E. Dyakonova, I. A. Chistopolsky, T. L. Dyakonova, et al., “Direct and decarboxylation-dependent effects of neurotransmitter precursors on firing of isolated monoaminergic neurons,” J. Comp. Physiol., A195, No. 6, 515–527 (2009).

    Article  Google Scholar 

  32. V. E. Dyakonova and A. L. Krushinsky, “Previous motor experience enhances courtship behavior in male cricket Gryllus bimaculatus,” J. Insect Behav., 21, 172–180 (2008).

    Article  Google Scholar 

  33. V. E. Dyakonova, D. A. Sakharov, and F.-W. Schuermann, “Effects of serotonergic and opioidergic drugs on escape behavior and social status of male crickets,” Naturwissenschaften, 86, 435–437 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. D. H. Edwards and E. A. Kravitz, “Serotonin, social status and aggression,” Curr. Opin. Neurobiol., 6, 812–829 (1997).

    Article  Google Scholar 

  35. D. H. Edwards, S. R. Yeh, B. E. Musulf, et al., “Metamodulation of the crayfish escape circuit,” Brain Behav. Evol., 60, No. 6, 360–669 (2002).

    Article  PubMed  Google Scholar 

  36. W. O. Friesen and W. B. Kristan, “Leech locomotion: swimming, crawling, and decisions,” Curr. Opin. Neurobiol., 17, No. 6, 704–711 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Q. Gaudry and W. B. Kirstan, Jr., “Behavioral choice by presynaptic inhibition of tactile sensory terminals,” Nat. Neurosci., 12, No. 11, 1450–1457 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Q. Gaudry, N. Ruiz, T. Huang, et al., “Behavioral choice between species: chacun à son goût,” J. Exp. Biol., 213, 1356–1365 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. D. L. Glanzman and F. B. Krasne, “Serotonin and octopamine have opposite modulatory effects on the crayfish’s lateral giant escape reaction,” J. Neurosci., 11, 2263–2269 (1983).

    Google Scholar 

  40. D. L. Glanzman and F. B. Krasne, “5,7-Dihydroxytryptamine lesions of crayfish serotonin-containing neurons: effect of the lateral giant escape reaction,” J. Neurosci., 6, 1560–1569 (1986).

    CAS  PubMed  Google Scholar 

  41. R. S. Goldstein and J. M. Camhi, “Different effects of the biogenic amines dopamine, serotonin and octopamine on the thoracic and abdominal portions of the escape circuit in the cockroach,” J. Comp. Physiol., A168, 103–112 (1991).

    Article  Google Scholar 

  42. E. Hara, L. Kubikova, N. A. Nessler, and E. D. Jarvis, “Assessing visual requirements for social context-dependent activation of the songbird song system,” Proc Biol. Sci., 276, No. 1655, 279–289 (2009).

    Article  PubMed Central  PubMed  Google Scholar 

  43. M. E. Hasselmo and H. Eichenbaum, “Hippocampal mechanisms for the context-dependent retrieval of episodes,” Neural Netw., 9, 1172–1190 (2005).

    Article  Google Scholar 

  44. N. G. Hatcher, X. Zhang, J. N. Stuart, et al., “5-HT and 5-HT-SO4, but not tryptophan or 5-HIAA levels in single feeding neurons track animal hunger state,” J. Neurochem., 104, No. 5, 1358–1363 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. J. Herberholz, C. McCurdy, and D. H. Edwards, “Direct benefits of social dominance in juvenile crayfish,” Biol. Bull., 213, No. 1, 21–27 (2007).

    Article  PubMed  Google Scholar 

  46. L. Hernádi, L. Hiripi, V. Dyakonova, et al., “The effect of food intake on the central monoaminergic system in the snail, Lymnaea stagnalis,” Acta Biol. Hung., 55, No. 1–4, 185–194 (2004).

    Article  PubMed  Google Scholar 

  47. H. A. Hofmann and P. A. Stevenson, “Flight restores fight in crickets,” Nature, 403, 613 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. H. R. Horvitz, M. Chalfie, C. Trent, et al., “Serotonin and octopamine in the nematode Caenorhabditis elegans,” Science, 216, 1012–1014 (1982).

    Article  CAS  PubMed  Google Scholar 

  49. R. Huber, M. Orzeszyna, N. Pokorny, and E. A. Kravitz, “Biogenic amines and aggression: experimental approaches in crustaceans,” Brain Behav. Evol., 50, Supplement 1, 60–68 (1997).

    Google Scholar 

  50. R. Huber, K. Smith, A. Delago, et al., “Serotonin and aggressive motivation in crustaceans: altering the decision to retreat,” Proc. Natl. Acad. Sci. USA, 94, No. 11, 5939–5942 (1997).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. M. D. Humphries, K. Gurney, and T. J. Prescott, “Is there a brainstem substrate for action selection?” Phil. Trans. Roy. Soc., B362, 1627–1639 (2007).

    Article  Google Scholar 

  52. E. A. Kabotyanski, W. Winlow, D. A. Sakharov, et al., Soc. Neurosi. Abstr., 18, 531 (1992).

    Google Scholar 

  53. N. M. Kalberer, C. E. Riesenman, and J. G. Hildebrand, “Male moths bearing transplanted female antennae express characteristically female behaviour and central neural activity,” J. Exp. Biol., 213, 1272–1280 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. F. B. Krasne, A. Shamsian, and R. Kulkarni, “Altered excitability of the crayfish lateral giant escape reflex during agonistic encounters,” J. Neurosci., 17, No. 2, 709–716 (1997).

    CAS  PubMed  Google Scholar 

  55. E. A. Kravitz, “Hormonal control of vehicle: amines and the biasing of behavioural output in lobsters,” Science, 241, No. 4874, 1775–1781 (1988).

    Article  CAS  PubMed  Google Scholar 

  56. E. A. Kravitz, “Serotonin and aggression: insights gained from a lobster model system and speculations on the role of amine neurons in a complex behavior,” J. Comp. Physiol., A186, No. 3, 221–238 (2000).

    Article  Google Scholar 

  57. E. A. Kravitz, S. Glusman, R. M. Harris-Warrick, et al., “Amines and a peptide as neurohormones in lobsters: actions on neuromuscular preparations and preliminary behavioural studies,” J. Exp. Biol., 89, 159–175 (1980).

    CAS  PubMed  Google Scholar 

  58. A. Leblois, B. J. Wendel, and D. J. Perkel, “Striatal dopamine modulates basal ganglia output and regulates social context-dependent behavioral variability through D1 receptors,” J. Neurosci., 30, No. 16, 5730–5743 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. C. M. Lent and M. H. Dickinson, “The neurobiology of feeding in leeches,” Sci. Am., 258, No. 6, 98–103 (1988).

    Article  CAS  PubMed  Google Scholar 

  60. W. H. Liden and J. Herberholz, “Behavioral and neural responses of juvenile crayfish to moving shadows,” J. Exp. Biol., 211, 1355–1361 (2008).

    Article  PubMed  Google Scholar 

  61. W. H. Liden, M. L. Phillips, and J. Herberholz, “Neural control of behavioural choice in juvenile crayfish,” J. Proc. Biol. Sci., 277, No. 1699, 3493–3500 (2010).

    Article  Google Scholar 

  62. M. S. Livingstone, R. M. Harris-Warrick, and E. A. Kravitz, “Serotonin and octopamine produce opposite postures in lobsters,” Science, 208, No. 443, 76–79 (1980).

    Article  CAS  PubMed  Google Scholar 

  63. S. Luedtke,V. O’Connor, L. Holden-Dye, and R. J. Walker, “The regulation of feeding and metabolism in response to food deprivation in Caenorhabditis elegans,” Invert. Neurosci., 10, No. 2, 63–76 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. K. A. Mesce, “Metamodulation of the biogenic amines: second-order modulation by steroid hormones and amine cocktails,” Brain Behav. Evol., 60, No. 6, 339–349 (2002).

    Article  PubMed  Google Scholar 

  65. S. Murakami and M. T. Itoh, “Effects of aggression and wing removal on brain serotonin levels in male crickets, Gryllus bimaculatus,” J. Insect Physiol., 47, No. 11, 1309–1312 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. S. Murakami and M. T. Itoh, “Removal of both antennae influences the courtship and aggressive behaviors in male crickets,” J. Neurobiol., 57, No. 1, 110–118 (2003).

    Article  PubMed  Google Scholar 

  67. H. Neumeister, K. W. Whitaker, H. A. Hofmann, and T. Preuss, “Social and ecological regulation of a decision-making circuit,” J. Neurophysiol., 104, No. 6, 3180–3188 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. R. G. Oldfield and H. A. Hofmann, “Neuropeptide regulation of social behavior in the monogamous cichlid fish,” Physiol. Behav., 102, No. 3–4, 296–303 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. R. F. Oliveira, A. Silva, and A. V. Canário, “Why do winners keep winning? Androgen mediation of winner but not loser effects in cichlid fish,” Proc. Biol. Sci., 276, No. 1665, 2249–2256 (2009).

    Article  PubMed Central  PubMed  Google Scholar 

  70. S. B. Ostlund, K. M. Wassum, N. P. Murphy, et al., “Extracellular dopamine levels in striatal subregions track shifts in motivation and response cost during instrumental conditioning,” J. Neurosci., 31, 200–207 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. S. R. Ott and S. M. Rogers, “Gregarious desert locusts have substantially larger brains with altered proportions compared with the solitarious phase,” Proc. Biol. Sci., 277, No. 1697, 3087–3096 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  72. R. Perrone, G. Batista, D. Lorenzo, et al., “Vasotocin actions on electric behavior: interspecific, seasonal, and social context-dependent differences,” Front. Behav. Neurosci., 4, 52, (2010).

    PubMed Central  PubMed  Google Scholar 

  73. H.-J. Pueger and P. A. Stevenson, “Evolutionary aspects of octopaminergic systems with emphasis on arthropods,” Arthropod Structure and Development, 34, 379–396 (2005).

    Article  Google Scholar 

  74. J. G. Puhl and K. A. Mesce, “Dopamine activates the motor pattern for crawling in the medicinal leech,” J. Neurosci., 28, No. 16, 4192–4200 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. L. Quintana, P. Pouso, G. Fabbiani, and O. Macadar, “A central pacemaker that underlies the production of seasonal and sexually dimorphic social signals: anatomical and electrophysiological aspects,” J. Comp. Physiol., A197, No. 1, 75–88 (2011).

    Article  Google Scholar 

  76. R. Ranganathan, S. C. Cannon, and H. R. Horvitz, “MOD-1 is a serotonin-gated chloride channel that modulates locomotory behaviour in C. elegans,” Nature, 408, No. 6811, 470–475 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. S. C. Renn, N. Aubin-Horth, and H. A. Hofmann, “Fish and chips: functional genomics of social plasticity in an African cichlid fish,” J. Exp. Biol., 211, 3041–3056 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. J. Rillich, I. Schildberger, and P. A. Stevenson, “Octopamine and occupancy: an aminergic mechanism for intruder-resident aggression in crickets,” Proc. Biol. Sci., 278, No. 1713, 1873–1880 (2011).

    Article  PubMed Central  PubMed  Google Scholar 

  79. S. M. Rogers, T. Matheson, K. Sasaki, et al., “Substantial changes in central nervous system neurotransmitters and neuromodulators accompany phase change in the locust,” J. Exp. Biol., 207, 3603–3617 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. D. A. Sakharov, “Integrative function of serotonin common to distantly related invertebrate animals,” in: The Early Brain, M. Gustaffson and M. Reuter (eds.), Abo Akad. Press, Abo (1990), pp. 73–88.

    Google Scholar 

  81. P. Salmon, “Effects of physical exercise on anxiety, depression, and sensitivity to stress: a unifying theory,” Clin. Psychol. Rev., 21, 33–61 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. M. Sarter, V. Parikh, and W. M. Howe, “Phasic acetylcholine release and going to volume transmission hypothesis: time to move on,” Nat. Rev. Neurosci., 10, No. 5, 383–390 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. A. Sasaki, T. D. Sotnikova, R. R. Gainetdinov, and E. D. Jarvis, “Social context-dependent singing-regulated dopamine,” J. Neurosci., 26, No. 35, 9010–9014 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. E. R. Sawin, R. Ranganathan, and H. R. Horvitz, “C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway,” Neuron, 26, No. 3, 619–631 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. A. M. Schneiderman, J. G. Hildebrand, M. M. Brennan, and J. H. Tumlinson, “Trans-sexually grafted antennae alter pheromone-directed behaviour in a moth,” Nature, 323, No. 6091, 801–803 (1986).

    Article  CAS  PubMed  Google Scholar 

  86. L. U Sneddon, A. C. Taylor, F. A. Huntingford, and D. G. Watson, “Agonistic behaviour and biogenic amines in shore crabs Carcinus maenas,” J. Exp. Biol., 203, 537–544 (2000).

    Google Scholar 

  87. B. Song and L. Avery, “Serotonin activates overall feeding by activating two separate neural pathways in Caenorhabditis elegans,” J. Neurosci., 32, No. 6, 1920–1931 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. C. K. Song, J. Herberholz, and D. H. Edwards, “The effects of social experience on the behavioral response to unexpected touch in crayfish,” J. Exp. Biol., 209, 1355–1363 (2006).

    Article  PubMed  Google Scholar 

  89. K. Staras, I. Kemenes, P. R. Benjamin, and G. Kemenes, “Loss of self-inhibition is a cellular mechanism for episodic rhythmic behavior,” Curr. Biol., 13, No. 2, 116–124 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. P. A. Stevenson, V. E. Dyakonova, J. Rillich, and K. Schildberger, “Octopamine and experience-dependent modulation of aggression in crickets,” J. Neurosci., 25, No. 6, 1431–1441 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. P. A. Stevenson, H. A. Hofmann, K. Schoch, and K. Schildberger, “The fight and flight responses of crickets depleted of biogenic amines,” J. Neurobiol., 43, 107–120 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. H. K. Struder and H. Weicker, “Physiology and pathophysiology of the serotonergic system and its implications on mental and physical performance,” Int. J. Sports Med., 7, 482–497 (2001).

    Article  Google Scholar 

  93. S. Suo, Y. Kimura, and H. H. Van Tol, “Starvation induces cAMP response element-binding protein-dependent gene expression through octopamine-Gq signaling in Caenorhabditis elegans,” J. Neurosci., 26, No. 40, 10082–10090 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. E. Syková and C. Nicholson, “Diffusion in brain extracellular space,” Physiol. Rev., 88, No. 4, 1277–1340 (2008).

    Article  PubMed Central  PubMed  Google Scholar 

  95. B. C. Trainor and H. A. Hofmann, “Somatostatin regulates aggressive behavior in an African cichlid fish,” Endocrinology, 147, No. 11, 5119–5125 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. E. E. Voronezhskaya, M. Yu. Khabarova, and L. P. Nezlin, “Apical sensory neurones mediate developmental retardation induced by conspecific environmental stimuli in freshwater pulmonate snails,” Development, 131, 3671–3680 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. E. E. Voronezhskaya, K. I. Glebov, M. Y. Khabarova, et al., “Adult-toembryo chemical signaling in the regulation of larval development in trochophore animals: cellular and molecular mechanisms,” Acta Biol. Hung., 59, Supplement, 117–122 (2008).

    Google Scholar 

  98. L. S. Yafremava, C. W. Anthony, L. Lane, et al., “Orienting and avoidance turning are precisely computed by the predatory sea slug Pleurobranchaea californica McFarland,” J. Exp. Biol., 210, 561–569 (2007).

    Article  PubMed  Google Scholar 

  99. S.-R. Yeh, R. A. Fricke, and D. H. Edwards, “The effect of social experience on serotonergic modulation of the escape circuit of crayfish,” Science, 271, 366–369 (1996).

    Article  CAS  PubMed  Google Scholar 

  100. S.-R. Yeh, B. E. Musolf, and D. H. Edwards, “Neuronal adaptations to changes in the dominance status of crayfish,” J. Neurosci., 17, 697–708 (1997).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. D’yakonova.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 62, No. 6, pp. 664–680, November–December, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’yakonova, V.E. Neurotransmitter Mechanisms of Context-Dependent Behavior. Neurosci Behav Physi 44, 256–267 (2014). https://doi.org/10.1007/s11055-014-9905-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-014-9905-6

Keywords