Skip to main content

Advertisement

Log in

Application of Genetic Algorithm (GA) in History Matching of the Vapour Extraction (VAPEX) Heavy Oil Recovery Process

  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

This paper presents the application of genetic algorithm (GA) to the history-matching problem. As history matching of VAPEX (vapour extraction) experiments is a complex, highly nonlinear, and non-unique inverse problem, a modified GA was developed to assist the history-matching process. Compared to conventional GA, the computational time in this modified GA approach was reduced by 71 %, and an excellent match between the simulation data and experimental data was achieved, with the error being less than 1 %. This study is focussed on automatic history matching of the VAPEX heavy oil recovery process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Castellini, A., Gullapalli, I., Hoang, V., & Condon, P. (2005). Quantifying uncertainty in production forecast for fields with significant history: A West African case study. International Petroleum Technology Conference, 21–23 November, Doha, Qatar.

  • Chamkalani, A., Zendehboudi, S., Chamkalani, R., Lohi, A., Elkamel, A., & Chatzis, I. (2013). Utilization of support vector machine to calculate gas compressibility factor. Fluid Phase Equilibria, 358, 189–202.

    Article  Google Scholar 

  • Chipperfield, A., Fleming, P., Pohlheim, H., & Fonseca, C. (1994). The MATLAB Genetic Algorithm Toolbox v1.2 User’s Guide. University of Sheffield, UK.

  • De Jong, K. A. (1975). An analysis of the behaviour of a class of genetic adaptive systems. Doctoral dissertation, University of Michigan Ann Arbour, MI, USA.

  • Grefenstette, J. J. (1986). Optimization of control parameters for genetic algorithms. IEEE Transactions on Systems, Man and Cybernetics, 16(1), 122–128.

    Article  Google Scholar 

  • Hart, W. E., & Belew, R. K. (1991). Optimizing an arbitrary function is hard for the genetic algorithm. Proceedings of the Fourth International Conference on Genetic Algorithms (pp. 108–114).

  • Haupt, R. L., & Haupt, S. E. (1998). Practical Genetic Algorithms. Hoboken: John Wiley & Sons, Inc.

    Google Scholar 

  • Kerig, P. D., & Watson, A. T. (1987). A new algorithm for estimating relative permeabilities from displacement experiments. SPE Reservoir Engineering, 2(1), 103–112.

    Article  Google Scholar 

  • Kruger, W. D. (1961). Determining areal permeability distribution by calculations. Journal of Petroleum Technology, 13(7), 691–696.

    Article  Google Scholar 

  • Li, R., Reynolds, A. C., & Oliver, D. S. (2001). History matching of three-phase flow production data. SPE Reservoir Simulation Symposium, 11–14 February, Houston, Texas.

  • Lomeland, F., Ebeltoft, E., & Thomas, W. H. (2005). A new versatile relative permeability correlation. Toronto, Canada: International Symposium of the Society of Core Analysts.

    Google Scholar 

  • Lorentzen, R. J., Flornes, K. M., & Naevdal, G. (2012). History matching channelized reservoirs using the ensemble Kalman filter. Society of Petroleum Engineers Journal, 17(1), 137–151.

    Google Scholar 

  • Mantica, S., Cominelli, A., & Mantica, G. (2001). Combining global and local techniques for automatic history matching production and seismic data. SPE Reservoir Simulation Symposium, 11–14 February, Houston, Texas.

  • Mitchell, M. (1996). An Introduction to Genetic Algorithms, A Bradford Book The MIT Press.

  • Muhdar, T., & Masashi, K. (2013). Improvement of ship geometry by optimizing the sectional area curve with Binary-Coded Genetic Algorithms (BCGAs). The Twenty-third International Offshore and Polar Engineering Conference, 30 June-5 July, Anchorage, Alaska.

  • Reynolds, A. C., Li, R., & Oliver, D. S. (2004). Simultaneous estimation of absolute and relative permeability by automatic history matching of three-phase flow production data. Journal of Canadian Petroleum Technology, 43(3), 37–46.

    Article  Google Scholar 

  • Richmond, P. C., & Watson, A. T. (1990). Estimation of multiphase flow functions from displacement experiments. SPE Reservoir Engineering, 5(1), 121–127.

    Article  Google Scholar 

  • Roosta, A., Setoodeh, P., & Jahanmiri, A. (2012). Artificial neural network modeling of surface tension for pure organic compounds. Industrial and Engineering Chemical Research, 51(1), 561–566.

    Article  Google Scholar 

  • Sampaio, T. P., Ferreira Filho, V. J. M., & de Sa Neto, A. (2009). An application of feed forward neural network as nonlinear proxies for the use during the history matching phase. Latin American and Caribbean Petroleum Engineering Conference, 31 May-3 June, Cartagena de Indias, Colombia.

  • Schaffer, J.D., Caruana, R.A., Eshelman, L.J., & Das, R. (1989). A study of control parameters affecting online performance of genetic algorithms for function optimization. Proceedings of the third international conference on genetic algorithms (pp. 51–60).

  • Schulze-Riegert, R. W., Axmann, J. K., Haase, O., & Rian, D. T. (2002). Evolutionary algorithms applied to history matching of complex reservoirs. SPE Reservoir Evaluation and Engineering, 5(2), 163–173.

    Article  Google Scholar 

  • Shafiei, A., Dusseault, M. B., Zendehboudi, S., & Chatzis, I. (2013). A new screening tool for evaluation of steam flooding performance in Naturally Fractured Carbonate Reservoirs. Fuel, 108, 502–514.

    Article  Google Scholar 

  • Silva, P.C., Maschio, C., & Schiozer, D.J. (2006). Applications of the soft computing in the automated history matching. Canadian International Petroleum Conference, 13–15 June, Calgary, Alberta.

  • Sultan, A.J., Ouenes, A., & Weiss, W.W. (1994). Automatic history matching for an integrated reservoir description and improving oil recovery. Permian Basin Oil and Gas Recovery Conference, 16–18 March, Midland, Texas.

  • Sun, X., & Mohanty, K. K. (2005). Estimation of flow functions during drainage using genetic algorithm. Society of Petroleum Engineers Journal, 10(4), 449–457.

    Google Scholar 

  • Tan, T. B., & Kalogerakis, N. (1992). A three-dimensional three-phase automatic history matching model: Reliability of parameter estimates. Journal of Canadian Petroleum Technology, 31(3), 34–41.

    Article  Google Scholar 

  • Thomas, L. K., Hellums, L. J., & Rehais, G. M. (1972). A nonlinear automatic history matching technique for reservoir simulation models. Society of Petroleum Engineers Journal, 12(6), 508–514.

    Article  Google Scholar 

  • Tokuda, N., Takahashi, S., Watanabe, M., & Kurose, T. (2004). Application of Genetic Algorithm to history matching for core flooding, SPE Asia Pacific Oil and Gas Conference and Exhibition, 18–20 October, Perth, Australia.

  • Vasanth Kumar, K. (2009). Neural network prediction of interfacial tension at crystal/solution interface. Industrial and Engineering Chemical Research, 48(8), 4160–4164.

    Article  Google Scholar 

  • Wathiq, J.M., & Al-Mudhafer (2013). Coupling programming of an adaptive genetic algorithm with reservoir flow simulation for infill oil well location optimization. SPE Western Regional & AAPG Pacific Section Meeting 2013 Joint Technical Conference, 19–25 April, Monterey, California, USA.

  • Watson, A.T., & Lee, W.J. (1986). A new algorithm for automatic history matching production data. SPE Unconventional Gas Technology Symposium, 18–21 May, Louisville, Kentucky.

  • Yang, P. H., & Watson, A. T. (1991). A Bayesian methodology for estimating relative permeability curves. SPE Reservoir Engineering, 6(2), 259–265.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Petroleum Technology Research Centre (PTRC) and the Natural Sciences and Engineering Research Council (NSERC) for the financial support. The authors also wish to thank the anonymous reviewers for their detailed and valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanhua Zeng.

Additional information

The VAPEX process involves injection of vaporized hydrocarbon solvents into heavy oil and bitumen reservoirs; the solvent-diluted oil drains by gravity to a horizontal production well

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Zhang, M., Zeng, F. et al. Application of Genetic Algorithm (GA) in History Matching of the Vapour Extraction (VAPEX) Heavy Oil Recovery Process. Nat Resour Res 24, 221–237 (2015). https://doi.org/10.1007/s11053-014-9255-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-014-9255-7

Keywords

Navigation