Skip to main content
Log in

Optimized field confinement and plasmon-induced SERS activity of Janus-like Au–AgAuS hybrid nanoboats

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Janus-like Au–AgAuS hybrid nanoboats (NBs) with controllable half shells were prepared by using seed-mediated growth method. Their tunable plasmon properties were investigated by using UV-Vis spectra and finite-difference time-domain (FDTD) method. With the shell thicknesses increasing, the red shifting of surface plasmon resonance (SPR) peaks and an obvious enhancement of transverse SPR band have been observed for the Janus-like NBs. The effects of shell thicknesses and covered areas on local electric field of Janus-like Au–AgAuS NBs were further studied by FDTD simulation, which proposed an effective method to manipulate the electromagnetic field distributions of metal plasmonic nanostructures. In addition, served as solution-based active SERS substrates, the SERS performances of Au NRs and Janus-like Au–AgAuS NBs with different shell thicknesses have been further estimated by using rhodamine B as probe molecules. Compared with the others, Au–AgAuS NBs with about 2.82-nm shell displayed the best SERS performance with good reproducibility in our experiments, owing to the effective plasmonic enhancement and load capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arshad MS, Trafela Š, Rožman KŽ, Kovač J, Djinović P, Pintar A (2017) Determination of Schottky barrier height and enhanced photoelectron generation in novel plasmonic immobilized multisegmented (Au/TiO2) nanorod arrays (NRAs) suitable for solar energy conversion applications. J Mater Chem C 5:10509–10516

    Article  CAS  Google Scholar 

  • Bar-Elli O, Grinvald E, Meir N, Neeman L, Oron D (2015) Enhanced third-harmonic generation from a metal/semiconductor core/shell hybrid nanostructure. ACS Nano 9:8064–8069

    Article  CAS  Google Scholar 

  • Cai Q, Lu S, Liao F, Li Y, Ma S, Shao M (2014) Catalytic degradation of dye molecules and in situ SERS monitoring by peroxidase-like Au/CuS composite. Nanoscale 6:8117–8123

    Article  CAS  Google Scholar 

  • Chen H, Shao L, Li Q, Wang J (2013) Gold nanorods and their plasmonic properties. Chem Soc Rev 42:2679–2724

    Article  CAS  Google Scholar 

  • Chen L, Sun H, Zhao Y, Zhang Y, Wang Y, Liu Y, Zhang X, Jiang Y, Hua Z, Yang J (2017) Plasmonic-induced SERS enhancement of shell-dependent Ag@Cu2O core–shell nanoparticles. RSC Adv 7:16553–16560

    Article  CAS  Google Scholar 

  • Cui C, Li X, Liu J, Hou Y, Zhao Y, Zhong G (2015) Synthesis and functions of Ag2S nanostructures. Nanoscale Res Lett 10:431

    Article  Google Scholar 

  • Fu X, Jiang T, Zhao Q, Yin H (2012) Charge-transfer contributions in surface-enhanced Raman scattering from Ag, Ag2S and Ag2Se substrates. J Raman Spectrosc 43:1191–1195

    Article  CAS  Google Scholar 

  • Huang H, Liu X, Zeng Y, Yu X, Liao B, Yi P, Chu PK (2009) Optical and biological sensing capabilities of Au2S/AuAgS coated gold nanorods. Biomaterials 30:5622–5630

    Article  CAS  Google Scholar 

  • Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B 105:4065–4067

    Article  CAS  Google Scholar 

  • Ji M, Xu M, Zhang W, Yang Z, Huang L, Liu J, Zhang Y, Gu L, Yu Y, Hao W, An P, Zheng L, Zhu H, Zhang J (2016a) Structurally well-defined Au@Cu2-xS core-shell nanocrystals for improved cancer treatment based on enhanced photothermal efficiency. Adv Mater 28:3094–3101

    Article  CAS  Google Scholar 

  • Ji W, Zhao B, Ozaki Y (2016b) Semiconductor materials in analytical applications of surface-enhanced Raman scattering. J Raman Spectrosc 47:51–58

    Article  CAS  Google Scholar 

  • Jiang R, Li B, Fang C, Wang J (2014) Metal/semiconductor hybrid nanostructures for plasmon-enhanced applications. Adv Mater 26:5274–5309

    Article  CAS  Google Scholar 

  • Kumar BG, Srinivas B, Prasad MD, Muralidharan K (2015) Ag/Ag2S heterodimers: tailoring the metal–semiconductor interface in a single nanoparticle. J Nanopart Res 17:325

    Article  Google Scholar 

  • Li JF, Huang YF, Ding Y, Yang ZL, Li SB, Zhou XS, Fan FR, Zhang W, Zhou ZY, Wu DY, Ren B, Wang ZL, Tian ZQ (2010) Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464:392–395

    Article  CAS  Google Scholar 

  • Li P, Lappas A, Lavieville R, Zhang Y, Krahne R (2012) CdSe–Au nanorod networks welded by gold domains: a promising structure for nano-optoelectronic components. J Nanopart Res 14:1–5

    Google Scholar 

  • Li J-B, Liang S, He M-D, Chen L-Q, Wang X-J, Peng X-F (2015) A tunable bistable device based on a coupled quantum dot–metallic nanoparticle nanosystem. Appl Phys B Lasers Opt 120:161–166

    Article  CAS  Google Scholar 

  • Li M, Yu X-F, Liang S, Peng X-N, Yang Z-J, Wang Y-L, Wang Q-Q (2011) Synthesis of Au-CdS core-shell hetero-nanorods with efficient exciton-plasmon interactions. Adv Funct Mater 21:1788–1794

    Article  CAS  Google Scholar 

  • Liang S, Li J-B, Li M, Tang X (2017) Tunable plasmon resonance and enhanced photocatalytic activity of Au–CdS core–shell nanodogbones. Plasmonics 13:181–187

    Article  Google Scholar 

  • Liang S, Liu XL, Yang YZ, Wang YL, Wang JH, Yang ZJ, Wang LB, Jia SF, Yu XF, Zhou L, Wang JB, Zeng J, Wang QQ, Zhang Z (2012) Symmetric and asymmetric Au-AgCdSe hybrid nanorods. Nano Lett 12:5281–5286

    Article  CAS  Google Scholar 

  • Liu XL, Liang S, Nan F, Yang ZJ, Yu XF, Zhou L, Hao ZH, Wang QQ (2013) Solution-dispersible Au nanocube dimers with greatly enhanced two-photon luminescence and SERS. Nanoscale 5:5368–5374

    Article  CAS  Google Scholar 

  • Liu XL, Nan F, Qiu Y-H, Yang D-J, Ding S-J, Wang Q-Q (2018) Large third-order optical susceptibility with good nonlinear figures of merit induced by octupole plasmon resonance of asymmetric Au−Ag core−shell nanorods. J Phys Chem C 122:3958–3964

    Article  CAS  Google Scholar 

  • Liu M, Zeng HC (2014) General synthetic approach to heterostructured nanocrystals based on noble metals and I-VI, II-VI, and I-III-VI metal chalcogenides. Langmuir 30:9838–9849

    Article  CAS  Google Scholar 

  • Lombardi JR, Birke RL (2009) A unified view of surface-enhanced Raman scattering. Accounts Chem Res 42:734–742

    Article  CAS  Google Scholar 

  • Ma L, Liang S, Liu X-L, Yang D-J, Zhou L, Wang Q-Q (2015) Synthesis of dumbbell-like gold-metal sulfide core-shell nanorods with largely enhanced transverse plasmon resonance in visible region and efficiently improved photocatalytic activity. Adv Funct Mater 25:898–904

    Article  CAS  Google Scholar 

  • Muhammed MA, Doblinger M, Rodriguez-Fernandez J (2015) Switching plasmons: gold nanorod-copper chalcogenide core-shell nanoparticle clusters with selectable metal/semiconductor NIR plasmon resonances. J Am Chem Soc 137:11666–11677

    Article  CAS  Google Scholar 

  • Nan F, Liang S, Wang JH, Liu XL, Yang DJ, Yu XF, Zhou L, Hao ZH, Wang QQ (2014) Tunable plasmon enhancement of gold/semiconductor core/shell hetero-nanorods with site-selectively grown shell. Adv Opt Mater 2:679–686

    Article  CAS  Google Scholar 

  • Nan F et al (2013) Sign-reversed and magnitude-enhanced nonlinear absorption of Au–CdS core–shell hetero-nanorods. Appl Phys Lett 163112:102

    Google Scholar 

  • Okuno Y, Nishioka K, Nakashima N, Niidome Y (2009) Rapid formation of silver shells on gold nanorods in a micellar solution of hexadecyltrimethylammonium chloride. Chem Lett 38:60–61

    Article  CAS  Google Scholar 

  • Orendorff CJ, Gearheart L, Jana NR, Murphy CJ (2006) Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates. Phys Chem Chem Phys 8:165–170

    Article  CAS  Google Scholar 

  • Petrova H, Perez Juste J, Pastoriza-Santos I, Hartland GV, Liz-Marzan LM, Mulvaney P (2006) On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating. Phys Chem Chem Phys 8:814–821

    Article  CAS  Google Scholar 

  • Shahjamali MM, Zhou Y, Zaraee N, Xue C, Wu J, Large N, McGuirk CM, Boey F, Dravid V, Cui Z, Schatz GC, Mirkin CA (2016) Ag-Ag2S hybrid nanoprisms: structural versus plasmonic evolution. ACS Nano 10:5362–5373

    Article  CAS  Google Scholar 

  • Shaviv E, Schubert O, Alves-Santos M, Goldoni G, di Felice R, Vallée F, del Fatti N, Banin U, Sönnichsen C (2011) Absorption properties of metal-semiconductor hybrid nanoparticles. ACS Nano 5:4712–4719

    Article  CAS  Google Scholar 

  • Shen S, Wang Q (2012) Rational tuning the optical properties of metal sulfide nanocrystals and their applications. Chem Mater 25:1166–1178

    Article  Google Scholar 

  • Sun Z, Yang Z, Zhou J, Yeung MH, Ni W, Wu H, Wang J (2009) A general approach to the synthesis of gold-metal sulfide core-shell and heterostructures. Angew Chem Int Ed 48:2881–2885

    Article  CAS  Google Scholar 

  • Tian Z-Q, Ren B, Li J-F, Yang Z-L (2007) Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy. Chem Commun 34:3514–3534

    Article  Google Scholar 

  • Wang H, Sun Z, Lu Q, Zeng F, Su D (2012) One-pot synthesis of (Au nanorod)-(metal sulfide) core-shell nanostructures with enhanced gas-sensing property. Small 8:1167–1172

    Article  CAS  Google Scholar 

  • Wang M, Ye M, Iocozzia J, Lin C, Lin Z (2016) Plasmon-mediated solar energy conversion via photocatalysis in noble metal/semiconductor composites. Adv Sci 3:1600024

    Article  Google Scholar 

  • Yu H-Z, Zhang J, Zhang H-L, Liu Z-F (2012) Surface-enhanced Raman scattering (SERS) from azobenzene self-assembled “sandwiches”. Langmuir 15:16–19

    Article  Google Scholar 

  • Zhang J, Li X, Sun X, Li Y (2005) Surface enhanced Raman scattering effects of silver colloids with different shapes. J Phys Chem B 109:12544–12548

    Article  CAS  Google Scholar 

  • Zhang Y, Ma H, Wu D, Li Y, Du B, Wei Q (2015) Label-free immunosensor based on Au@Ag2S nanoparticles/magnetic chitosan matrix for sensitive determination of ractopamine. J Electroanal Chem 741:14–19

    Article  CAS  Google Scholar 

  • Zhang J, Tang Y, Lee K, Ouyang M (2010a) Nonepitaxial growth of hybrid core-shell nanostructures with large lattice mismatches. Science 327:1634–1638

    Article  CAS  Google Scholar 

  • Zhang J, Tang Y, Lee K, Ouyang M (2010b) Tailoring light-matter-spin interactions in colloidal hetero-nanostructures. Nature 466:91–95

    Article  CAS  Google Scholar 

  • Zheng D, Pang X, Wang M, He Y, Lin C, Lin Z (2015) Unconventional route to hairy plasmonic/semiconductor core/shell nanoparticles with precisely controlled dimensions and their use in solar energy conversion. Chem Mater 27:5271–5278

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Weichang Zhou and Yi Ji for the helpful discussions and SERS tests of samples.

Availability of data and material

All data are presented in the main paper or in additional supporting files. They are fully available without restriction. Additional files including: Fig. S1 Shell thickness distributions of Au–AgAuS NBs with different addition amount of reaction precursors. Fig. S2 The corresponding absorption spectra of Au–Ag NRs in growing processes. Fig. S3 The normal Raman spectrum of 10−2 M pure RhB solution. Table S1 Experimental (Exp.) and Literature (Lit.) SERS shifts of RhB molecules detected by using as-prepared Au NRs and Au–AgAuS NBs with 2.82-nm shell as substrates. Table S2 The EF value calculated for Au NRs, Au–AgAuS NBs with 2.82-nm, 4.25-nm, 7.45-nm, and 10.34-nm shells in our experiments.

Funding

This work was supported by the Natural Science Foundation of China (Grant No. 11504105) and Undergraduate Student Innovation Experiment Project of Hunan Province (Grant No. 201510542002).

Author information

Authors and Affiliations

Authors

Contributions

LT had performed the experimental works and wrote this manuscript. GJ, YGH, WJZ, and ZCL did structural characterization of samples. SL designed the experiments and modified the manuscript. JBL, ML and XT helped in data analysis. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shan Liang.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 223 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, L., Jiang, G., He, YG. et al. Optimized field confinement and plasmon-induced SERS activity of Janus-like Au–AgAuS hybrid nanoboats. J Nanopart Res 20, 269 (2018). https://doi.org/10.1007/s11051-018-4371-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-018-4371-7

Keywords

Navigation