Skip to main content
Log in

Synthesis and electro-catalytic activity of Pt-Co nanoflowers

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The study of metallic nanoflowers has attracted more and more attention because of their larger surface areas and active sites, which could be applied for surface-sensitive areas. Despite these excellent characteristics, it is still very hard to synthesize noble metal nanoflowers as the flower-like structure is apt to change into some more stable shapes which are covered by lower energy surfaces. In this study, Pt-Co nanoflowers were successfully synthesized by a two-step method via the reaction between Co nanoparticles and Pt precursor. From the transmission electron microscopy (TEM) images, it could be seen clearly that the products possessed a flower-like nanostructure. The morphology of the final products depended on a number of parameters, such as the reaction time and the reaction temperature. Based on the experimental results and theoretical calculation, the formation of nanoflowers could be attributed to the galvanic replacement reaction between Co nanoparticles and Pt precursor. In addition, the electrochemical catalytic activity of Pt-Co nanoflowers toward methanol oxidation was also evaluated in comparison with that of commercial Pt black. Owing to the special structure, the electro-catalytic activity and stability of Pt-Co nanoflowers were much better than those of commercial Pt black.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Cao YQ, Yang Y, Shan YF, Huang ZR (2016) One-pot and facile fabrication of hierarchical branched Pt-cu nanoparticles as excellent electrocatalysts for direct methanol fuel cells. ACS Appl Mater Interfaces 8:5998–6003. doi:10.1021/acsami.5b11364

    Article  Google Scholar 

  • Chen C, Kang YY, Huo ZY, Zhu ZW, Huang WY, Xin HL, Snyder JD, Li DG, Herron JA, Mavrikakis M, Chi MF, More KL, Li YD, Markovic NM, Somorjai GA, Yang PD, Stamenkovic VR (2014) Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343:1339–1343. doi:10.1126/science.1249061

    Article  Google Scholar 

  • Chen TY, Lin TL, Luo TJ, Choi Y, Lee JF (2010) Effects of Pt shell thicknesses on the atomic structure of Ru-Pt core-shell nanoparticles for methanol electrooxidation applications. Chem Phys Chem 11:2383–2392. doi:10.1002/cphc.200901006

    Article  Google Scholar 

  • Cooper JK, Franco AM, Gul S, Corrado C, Zhang JZ (2011) Characterization of primary amine capped CdSe, ZnSe, and ZnS quantum dots by FT-IR: determination of surface bonding interaction and identification of selective desorption. Langmuir 27:8486–8493. doi:10.1021/la201273x

    Article  Google Scholar 

  • Cui QL, Shen GZ, Yan XH, Li LD, Möhwald H, Bargheer M (2014) Fabrication of Au@Pt multibranched nanoparticles and their application to in situ SERS monitoring. ACS Appl Mater Interfaces 6:17075. doi:10.1021/am504709a

    Article  Google Scholar 

  • Eid K, Wang HJ, Malgras V, Alshehri SM, Ahamad T, Yamauchi Y, Wang L (2015) One-step solution-phase synthesis of bimetallic PtCo nanodendrites with high electrocatalytic activity for oxygen reduction reaction. J Electroanalytical Chem 799:250–255. doi:10.1016/j.jelechem.2015.10.035

    Google Scholar 

  • Formo E, Lee E, Campbell D, Xia YN (2008) Functionalization of electrospun TiO2 nanofibers with Pt nanoparticles and nanowires for catalytic applications. Nano Lett 8:668–672. doi:10.1021/nl073163v

    Article  Google Scholar 

  • Goesmann H, Feldmann C (2010) Nanoparticulate functional materials. Angew Chem Int Ed 49:1362–1395. doi:10.1002/anie.200903053

    Article  Google Scholar 

  • Gong MX, Fu GT, Chen Y, Tang YW, Hn LT (2014) Autocatalysis and selective oxidative etching induced synthesis of platinum-copper bimetallic alloy nanodendrites electrocatalysts. ACS Appl Mater Interfaces 6:7301–7308. doi:10.1021/am500656j

    Article  Google Scholar 

  • Huang W, Zuo ZJ, Han PD, Li ZH, Zhao TD (2009) XPS and XRD investigation of Co/Pd/ TiO2 catalysts by different preparation methods. J Electron Spectrosc Relat Phenom 173:88–95. doi:10.1016/j.elspec.2009.05.012

    Article  Google Scholar 

  • Huang XQ, Li YJ, Chen Y, Zhou EB, Xu YX, Zhou HL, Duan XF, Huang Y (2013) Palladium-based nanostructures with highly porous features and perpendicular pore channels as enhanced organic catalysts. Angew Chem Int Ed 52:2520–2524. doi:10.1002/anie.201208901

    Article  Google Scholar 

  • Huang XQ, Zhao ZP, Fan JM, Tan YM, Zheng NF (2011) Amine-assisted synthesis of concave polyhedral platinum nanocrystals having {411} high-index facets. J Am Chem Soc 133:4718–4721. doi:10.1021/ja1117528

    Article  Google Scholar 

  • Jiang Q, Jiang LH, Hou HY, Qi J, Wang SL, Sun GQ (2010) One step synthesis of carbon-supported Ag/MnyOx composites for oxygen reduction reaction in alkaline media. J Phys Chem C 114:337–345. doi:10.1016/j.apcatb.2011.03.007

    Google Scholar 

  • Jiang XF, Wang XB, Shen LM, Wu Q, Wang YN, Ma YW, Wang XZ, Hu Z (2016) High-performance Pt catalysts supported on hierarchical nitrogen-doped carbon nanocages for methanol electrooxidation. Chin J Catal 37:1149–1155. doi:10.1016/S1872-2067(15)61117-2

    Article  Google Scholar 

  • Kelland L (2007) The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer 7:573. doi:10.1038/nrc21.67

    Article  Google Scholar 

  • Kim K, Kim KL, Shin KS (2011) Coreduced Pt/Ag alloy nanoparticles: surface-enhanced raman scattering and electrocatalytic activity. J Phys Chem C 115:23374–23380. doi:10.1021/jp2063707

    Article  Google Scholar 

  • Liang HP, Zhang HM, Hu JS, Guo YG, Wan LJ, Bai CL (2004) Pt hollow nanospheres: facile synthesis and enhanced electrocatalysts. Angew Chem Int Ed 43:1540–1543. doi:10.1002/anie.200352956

    Article  Google Scholar 

  • Lim B, Jiang MJ, Camargo PHC, Cho EC, Tao J, Lu XM, Zhu YM, Xia YN (2009) Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 324:1302–1305. doi:10.1126/science.1170377

    Article  Google Scholar 

  • Lin ZH, Shih ZY, Tsai HY, Chang HT (2011) Efficient and convenient C-3 functionalization of indoles through Ce(OAc)3/TBHP-mediated oxidative C-H bond activation in the presence of β-cyclodextrin. Green Chem 13:1029–3087. doi:10.1039/C1GC15639J

    Article  Google Scholar 

  • McGrath AJ, Chien Y, Cheong S, Herman DAJ, Watt J, Henning AM, Gloag L, Yeh CS, Tilley RD (2015) ACS Nano 9:12283–12291. doi:10.1021/acsnano.5b05563

    Article  Google Scholar 

  • Merte LR, Grabow LC, Peng GW, Knudsen J, Zeuthen H, Kudernatsch W, Porsgaard S, Lægsgaard E, Mavrikakis M, Besenbacher F (2011) Tip-dependent scanning tunneling microscopy imaging of ultrathin FeO films on Pt(111). J Phys Chem C 151:2089–2099. doi:10.1021/jp109581a

    Article  Google Scholar 

  • Mohanty A, Garg N, Jin RC (2010) A universal approach to the synthesis of noble metal nanodendrites and their catalytic properties. Angew Chem Int Ed 49:4962–4966. doi:10.1002/anie.201000902

    Article  Google Scholar 

  • Neelgund GM, Karthikeyan B, Shivashankar SA, Oki A (2015) Single-step, size-controlled synthesis of colloidal silver nanoparticles stabilized by octadecylamine. Appl Surf Sci 356:726–731. doi:10.1016/j.apsusc.2015.07.209

    Article  Google Scholar 

  • Qi K, Wang QY, Zheng WT, Cui XQ (2014) Porous single-crystalline palladium nanoflowers with enriched {100} facets for highly enhanced ethanol oxidation. Nano 6:15090–15097. doi:10.1039/c4nr05761a

    Google Scholar 

  • Qu XM, Cao ZM, Zhang BW, Tian XC, Zhu FC, Zhang ZC, Jiang YX, Sun SG (2016) One-pot synthesis of single-crystalline PtPb nanodendrites with enhanced activity for electrooxidation of formic acid. Chem Commun 52:4493–4496. doi:10.1021/am500656j

    Article  Google Scholar 

  • Rodrigues TS, Silva AGM, GonÅalves MC, Fajardo HV, Balzer R, Probst LFD, Camargo PHC (2015) AgPt hollow nanodendrites: synthesis and uniform dispersion over SiO support for catalytic applications. Chem Nano Mat 1:46–51. doi:10.1002/cnma.201500025

    Google Scholar 

  • Wang L, Nemoto Y, Yamauchi Y (2011) Direct synthesis of spatially-controlled Pt-on-Pd bimetallic nanodendrites with superior electrocatalytic activity. J Am Chem Soc 133:9674–9677. doi:10.1021/ja202655j

    Article  Google Scholar 

  • Wang YL, Cheng QQ, Yuan T, Zhou Y, Zhang HF, Zou ZQ, Fang JH, Yang H (2016a) Controllable fabrication of ordered Pt nanorod array as catalytic electrode for passive direct methanol fuel cells. Chin J Catal 37:1089–1095. doi:10.1016/S1872-2067(15)61077-4

    Article  Google Scholar 

  • Wang M, Wang XD, Chen M, Yang ZY, Dong CZ (2016b) Nanostructured electrocatalytic materials and porous electrodes for direct methanol fuel cells. Chin J Catal 37:1037–1048. doi:10.1016/S1872-2067(16)62477-4

    Article  Google Scholar 

  • Yu XF, LiL L, Su YQ, Jia W, Dong LL, Wang DS, Peng Q, Zhao JL, Li YD (2016) Platinum-copper nanoframes: one-pot synthesis and enhanced electrocatalytic activity. Chem Eur J 22:4960–4965. doi:10.1002/chem.201600079

    Article  Google Scholar 

  • Yu XF, Wang DS, Peng Q, LiY D (2011) High performance electrocatalyst: Pt-Cu hollow nanocrystals. Chem Commun 47:8094–8096. doi:10.1039/c1cc12416a

    Article  Google Scholar 

  • Yu XF, Wang DS, Peng Q, Li YD (2013) Pt-M (M = Cu, Co, Ni, Fe) nanocrystals: from small nanoparticles to wormlike nanowires by oriented attachment. Chem Eur J 19:233–239. doi:10.1002/chem.201203332

    Article  Google Scholar 

  • Zheng JN, He LL, Chen C, Wang AJ, Ma KF, Feng JJ (2014) One-pot synthesis of platinum 3 cobalt nanoflowers with enhanced oxygen reduction and methanol oxidation. J Power Sources 268:744–751. doi:10.1016/j.jpowsour.2014.06.109

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (51401074, 51272064, and 21603052) and the Natural Science Foundation of Hebei Province (B2015202305).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaofei Yu or Jianling Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOC 535 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Y., Yu, X., Li, L. et al. Synthesis and electro-catalytic activity of Pt-Co nanoflowers. J Nanopart Res 19, 247 (2017). https://doi.org/10.1007/s11051-017-3956-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-017-3956-x

Keywords

Navigation