Skip to main content
Log in

Transforming single domain magnetic CoFe2O4 nanoparticles from hydrophobic to hydrophilic by novel mechanochemical ligand exchange

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Single-phase uniform-sized (~9 nm) cobalt ferrite (CFO) nanoparticles have been synthesized by hydrothermal synthesis using oleic acid as a surfactant. The as-synthesized oleic acid-coated CFO (OA-CFO) nanoparticles were well dispersible in nonpolar solvents but not dispersible in water. The OA-CFO nanoparticles have been successfully transformed to highly water-dispersible citric acid-coated CFO (CA-CFO) nanoparticles using a novel single-step ligand exchange process by mechanochemical milling, in which small chain citric acid molecules replace the original large chain oleic acid molecules available on CFO nanoparticles. The OA-CFO nanoparticle’s hexane solution and CA-CFO nanoparticle’s water solution remain stable even after 6 months and show no agglomeration and their dispersion stability was confirmed by zeta-potential measurements. The contact angle measurement shows that OA-CFO nanoparticles are hydrophobic whereas CA-CFO nanoparticles are superhydrophilic in nature. The potentiality of as-synthesized OA-CFO and mechanochemically transformed CA-CFO nanoparticles for the demulsification of highly stabilized water-in-oil and oil-in-water emulsions has been demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Arruebo M, Rodrigo F-p, Ricardo Ibarra M, Santamaría J (2007) Magnetic nanoparticles controlled release of drugs from nanostructured functional materials. Nano Today 2(3):22–32

    Article  Google Scholar 

  • Bajwa RS, Khan Z, Bakolas V, Braun W (2016) Water-lubricated Ni-based composite (Ni–Al2O3, Ni–SiC and Ni–ZrO2) thin film coatings for industrial applications. Acta Metallurgica Sinica (English Letters) 29(1):8–16 Retrieved ("http://dx.doi.org/10.1007/s40195-015-0354-1)

    Article  Google Scholar 

  • Bricen S et al (2012) Effects of synthesis variables on the magnetic properties of CoFe2O4 nanoparticles. J Magn Magn Mater 324:2926–2931

    Article  Google Scholar 

  • Brollo MEF et al (2016) Magnetic hyperthermia in brick-like Ag@Fe3O4 core–shell nanoparticles. J Magn Magn Mater 397:20–27 Retrieved (http://linkinghub.elsevier.com/retrieve/pii/S0304885315305072)

  • Chaudhary D, Khare N, Vankar VD (2016) Ag nanoparticles loaded TiO2/MWCNT ternary nanocomposite: a visible-light-driven photocatalyst with enhanced photocatalytic performance and stability. Ceram Int 42:15861–15867 Retrieved (http://dx.doi.org/10.1016/j.ceramint.2016.07.056)

    Article  Google Scholar 

  • Ge Q, Jincai S, Chung T-S, Amy G (2011) Hydrophilic superparamagnetic nanoparticles: synthesis, characterization, and performance in forward osmosis processes. Ind Eng Chem Res 50:382–388 Retrieved (http://dx.doi.org/10.1021/ie101013w)

    Article  Google Scholar 

  • Hatakeyama M et al (2011) A two-step ligand exchange reaction generates highly water-dispersed magnetic nanoparticles for biomedical applications. J Mater Chem 21:5959–5966

    Article  Google Scholar 

  • Hergt R, Hiergeist R, Hilger I, Kaiser WA, Lapatnikov Y (2004) Maghemite nanoparticles with very high AC-losses for application in RF-magnetic hyperthermia. J Magn Magn Mater 270:345–357

    Article  Google Scholar 

  • Huang S-h, Juang R-s (2011) Biochemical and biomedical applications of multifunctional magnetic nanoparticles: a review. J Nanopart Res 13:4411–4430

    Article  Google Scholar 

  • Kalpanadevi K, Sinduja CR, Manimekalai R (2014) A facile thermal decomposition route to synthesise CoFe2O4 nanostructures. Materials Science-Poland 32(1):34–38 Retrieved (http://link.springer.com/10.2478/s13536-013-0153-1)

    Article  Google Scholar 

  • Kharisov, Boris I. (2014) Mini-review: ferrite nanoparticles in the catalysis. Arabian Journal of Chemistry.

  • Kim YI, Kim D, Lee CS (2003) Synthesis and characterization of CoFe2O4 magnetic nanoparticles prepared by temperature-controlled coprecipitation method. Phys B Condens Matter 337(1–4):42–51

    Article  Google Scholar 

  • Kumar A, Gangopadhyay S, Chang C-h, Pande S, Kumar S (2015) Study on metal nanoparticles synthesis and orientation of Gemini surfactant molecules used as stabilizer. J Colloid Interface Sci 445:76–83 Retrieved (http://dx.doi.org/10.1016/j.jcis.2014.12.064)

    Article  Google Scholar 

  • Lavela P, Tirado JL (2007) CoFe2O4 and NiFe2O4 synthesized by sol-gel procedures for their use as anode materials for Li ion batteries. J Power Sources 172(1):379–387

    Article  Google Scholar 

  • Lei C et al (2015) Mesoporous materials modified by aptamers and hydrophobic groups assist ultra-sensitive insulin detection in serum. Chem Commun 51:13642–13645 Retrieved (http://dx.doi.org/10.1039/C5CC04458H)

    Article  Google Scholar 

  • Liao H et al (2015) One-pot synthesis of gadolinium(III) doped carbon dots for fluorescence/magnetic resonance bimodal imaging. RSC Adv 5:66575–66581 Retrieved (http://dx.doi.org/10.1039/C5RA09948J)

    Article  Google Scholar 

  • Loim NM, Khruscheva NS, Lukashov YS et al (1999) Solid-state photochemical ligand exchange in the cymantrene series. Russ Chem Bull 48:198

    Article  Google Scholar 

  • Manova E et al (2004) Mechano-synthesis, characterization, and magnetic properties of nanoparticles of cobalt ferrite, CoFe2O4. Chemistry of Materials (d):5689–5696

  • Mathew DS, Juang R-s (2007) An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chem Eng J 129:51–65

    Article  Google Scholar 

  • Munjal S, Khare N (2016) Cobalt ferrite nanoparticles with improved aqueous colloidal stability and electrophoretic mobility. P. 020092 in AIP Conference Proceedings, vol. 1724.

  • Munjal S, Khare N, Nehate C, Koul V (2016a) Water dispersible CoFe2O4 nanoparticles with improved colloidal stability for biomedical applications. J Magn Magn Mater 404:166–169

    Article  Google Scholar 

  • Munjal S, Kumari P, Ansari MZ, Khare N (2016b) Bipolar resistive switching in Bi25FeO40: PCBM nanocomposite thin film. P. 020540 in AIP Conference Proceedings, vol. 1728. (http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4946591). Accessed 17 July 2016

  • Palma SICJ et al (2015) Effects of phase transfer ligands on monodisperse iron oxide magnetic nanoparticles. J Colloid Interface Sci 437:147–155 Retrieved (http://dx.doi.org/10.1016/j.jcis.2014.09.019)

    Article  Google Scholar 

  • Patil RM et al (2014) Non-aqueous to aqueous phase transfer of oleic acid coated iron oxide nanoparticles for hyperthermia application. RSC Adv 4:4515–4522

    Article  Google Scholar 

  • Pilapong C et al (2015) Magnetic-EpCAM Nanoprobe as a new platform for efficient targeting, isolating and imaging hepatocellular carcinoma. RSC Adv 5:30687–30693 Retrieved (http://dx.doi.org/10.1039/C5RA01566A)

    Article  Google Scholar 

  • Reiss G, Hütten A (2005) Magnetic nanoparticles: applications beyond data storage. Nat Mater 4(October):725–726

    Article  Google Scholar 

  • Saffari, Jilla, Davood Ghanbari, Noshin Mir, and Khatereh Khandan-Barani (2014) Sonochemical synthesis of CoFe2O4 nanoparticles and their application in magnetic polystyrene nanocomposites. Journal of Industrial and Engineering Chemistry 20(6):4119–23. Retrieved (http://www.sciencedirect.com/science/article/pii/S1226086X14000483)

  • Sharp EL, Al-shehri H, Horozov TS, Stoyanov D, Paunov VN (2014) Adsorption of shape-anisotropic and porous particles at the air–water and the decane–water interface studied by the gel trapping technique. RSC Adv 4:2205–2213

    Article  Google Scholar 

  • Tamer U, Gundogdu Y, Boyaci IH, Pekmez K (2010) Synthesis of magnetic core–shell Fe3O4–Au nanoparticle for biomolecule immobilization and detection. J Nanopart Res 12:1187–1196

    Article  Google Scholar 

  • Tang W, Yu S, Li Q, Gao S, Shang JK (2013) Well-dispersed, ultrasmall, superparamagnetic magnesium ferrite nanocrystallites with controlled hydrophilicity/hydrophobicity and high saturation magnetization. RSC Adv 3:13961–13967

    Article  Google Scholar 

  • Wang L, Zhang H, Lu C, Zhao L (2014) Ligand exchange on the surface of cadmium telluride quantum dots with fluorosurfactant-capped gold nanoparticles: synthesis, characterization and toxicity evaluation. J Colloid Interface Sci 413:140–146 Retrieved (http://dx.doi.org/10.1016/j.jcis.2013.09.034)

    Article  Google Scholar 

  • Wang YM et al (2011) Synthesis of Fe3O4 magnetic fluid used for magnetic resonance imaging and hyperthermia. J Magn Magn Mater 323:2953–2959

    Article  Google Scholar 

  • Wu N et al (2004) Interaction of fatty acid monolayers with cobalt nanoparticles. Nano Lett 4:383–386

    Article  Google Scholar 

  • Zhang L, He R, Hong-chen G (2006) Oleic acid coating on the monodisperse magnetite nanoparticles. Appl Surf Sci 253:2611–2617

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the DeitY (project no. RP02395) and one of the authors (Sandeep Munjal) is thankful to the Council of Scientific and Industrial Research (CSIR), New Delhi for Senior Research Fellowship (SRF) Grant (09/086(1179)/2013-EMR1). It is declared that the authors have no other conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeraj Khare.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munjal, S., Khare, N. Transforming single domain magnetic CoFe2O4 nanoparticles from hydrophobic to hydrophilic by novel mechanochemical ligand exchange. J Nanopart Res 19, 18 (2017). https://doi.org/10.1007/s11051-016-3700-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3700-y

Keywords

Navigation