Skip to main content
Log in

A review on comparative study of PPI and PAMAM dendrimers

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Dendrimers are hyperbranched, monodispersed macromolecules with multivalent functional end groups. Dendrimers have been explored as carrier for many drugs like anticancer, antiviral, antimalarial, antiprotozoal, anti tubercular drugs. Although a number of different types of dendrimers containing different core molecules, branching monomers and surface functional groups have been designed till date for drug delivery applications, yet the poly(propyleneimine) (PPI) and poly(amidoamine) (PAMAM) dendrimers have been the most explored dendrimers in this regard. In this review, we have summarized a comparative data on PPI and PAMAM dendrimers particularly relevant to their properties, synthesis, toxicity, biomedical applications and drug delivery attributes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abbasi E, Aval SF, Akbarzadeh A, Milani M, Nasrabadi HT, Hanifepour Y, Nejatikoshki K, Pashaei-Asl R (2014) Dendrimers: synthesis, applications and properties. Nanoscale Res Lett 9:247

    Article  Google Scholar 

  • Akhter S, Ahmed I, Ahmad MZ, Ramazani F, Singh A, Rahman Z, Ahmad FJ, Storm G, Kok RJ (2013) Nanomedicines as cancer therapeutics: current status. Curr Cancer Drug Targets 13:362–378

    Article  Google Scholar 

  • Alamry KA, Georgiev NI, EI-Daly SA, Taib LA, Bojinov VB (2015) A highly selective ratiometric fluorescent pH probe based on a PAMAM wavelength-shifting bichromophoric system. Spectrochim Acta A 135:792–800

    Article  Google Scholar 

  • Aldosari OF (2011) Synthesis of some novel chiral dendrimers 1,1-binaphthyl derivatives. The University of Manchester, Manchester

    Google Scholar 

  • Avti Pk, Kakkar A (2013) Dendrimers as anti-inflammatory agent. Braz J Pharm Sci 49:57–65

    Article  Google Scholar 

  • Azar NTP, Mutlu P, Khodadust R, Gunduz U (2013) Poly(amidoamine) (PAMAM) nanoparticles: synthesis and biomedical applications. J Biol Chem 41(3):289–299

    Google Scholar 

  • Bagre AP, Jain K, Jain NK (2013) Alginate coated chitosan core shell nanoparticles for oral delivery of enoxaparin: in vitro and in vivo assessment. Int J Pharm 456:31–40

    Article  Google Scholar 

  • Brabander-van den Berg EMM, Meijer EW (1993) Poly(propylene imine) dendrimers: large scale synthesis by heterogeneously catalyzed hydrogenation. Angew Chem Int Ed Engl 32:1308–1311

    Article  Google Scholar 

  • Buhleier E, Wehner W, Vogtle F (1978) Synthesis of molecular cavity topologies. Synthesis 2:155–158

    Article  Google Scholar 

  • Boas U, Christensen JB, Heegaard PMH (2006) Dendrimers in medicine and biotechnology. New molecular tools. Royal Society of Chemistry. doi:10.1039/9781847552679

  • Cheng Y, Qu H, Ma M, Xu Z, Xu P, Fang Y, Xu T (2007) Polyamidoamine (PAMAM) dendrimers as biocompatible carriers of quinolones antimicrobials: as in vitro study. Eur J Med Chem 42:1032–1038

    Article  Google Scholar 

  • Doshi M (2011) Dendrimers and its application. Int J Pharm Sci Rev Res 7:104–111

    Google Scholar 

  • Drbohlavova J, Chomoucka J, Ryvolova M, Eckschlager T, Hubalek J, Kizek R (2013) Nanocarriers for anticancer drug—new trends in nanomedicine. Curr Drug Metab 14:547–564

    Article  Google Scholar 

  • Dufes C, Uchegbu IF, Schatzlein AG (2005) Dendrimers in gene delivery. Adv Drug Deliv Rev 57:2177–2202

    Article  Google Scholar 

  • Duncan R, Izzo L (2005) Dendrimers biocompatibility and toxicity. Adv Drug Deliv Rev 57:2215–2237

    Article  Google Scholar 

  • Duran-Lara E, Guzman L, John A, Fuentes E, Alarcon M, Palomo L, Santos LS (2013) PAMAM dendrimer derivatives as a potential drug for antithrombotic therapy. Eur J Med Chem 69:601–608

    Article  Google Scholar 

  • Dutta T, Garg M, Dubey V, Mishra D, Singh K, Pandita D (2008) Toxicological investigation of surface engineered fifth generation poly(propyleneimine) dendrimers. Nanotechnology 2(2):62–70

    Google Scholar 

  • Esfand R, Tomalia DA (2001) Poly(amidoamine) (PAMAM) dendrimers: from biomimicry delivery and biomedical applications. Drug Discov Today 6:427–436

    Article  Google Scholar 

  • Gajjar D, Patel R, Patel H, Patel PM (2014) Triazine based dendrimer as solubility ketoprofen: effect of concentration pH and generation. Int J Pharm Pharm Sci 6(4). ISSN 0975-1491

  • Gauniya A, Mazumder R, Pathak K (2014) Nanocrystals: a challenge for improved drug delivery. Asian J Biochem Pharm Res 4(3):282–192

    Google Scholar 

  • Gómez-Valadés AG, Molas M, Vidal-Alabró A, Bermúdez J, Bartrons R, Perales JC (2005) Copolymers of poly-l-lysine with serine and tryptophan form stable DNA vectors: implications for receptor-mediated gene transfer. J Control Release 102:277–291

    Article  Google Scholar 

  • Gupta U, Agashe HB, Jain NK (2007) Polypropylene imine dendrimer mediated solubility enhancement: effect of pH and functional groups of hydrophobes. J Pharm Pharm Sci 10:358–367

    Google Scholar 

  • Gupta U, Dwivedi SKD, Bid HK, Konwar R, Jain N (2010) Ligand anchored dendrimers based nanoconstructs for effective targeting to cancer cell. Int J Pharm 393:186–197

    Article  Google Scholar 

  • Hari B, Kalaimagal K, Porkodi R, Gajula PK, Ajay J (2012) Dendrimer: globular nanostructured materials for drug delivery. Int J PharmTech Res 4:432–451

    Google Scholar 

  • Hembade MJ, Kangane MR, Mansuk AG, Lukkad HR (2013) Dendrimers: as promising nanocarriers for drug delivery. Int J Pharm Arch 2(4):61–70

    Google Scholar 

  • Huang RQ, Qu YH, Ke WL, Zhu JH, Pei YY, Jiang C (2007) Efficient gene delivery targeted to the brain using a transferrin conjugated polyethylene glycol modified polyamidoamine dendrimer. FASEB J 21:1117–1125

    Article  Google Scholar 

  • Jain K, Jain N (2014) Surface engineered dendrimers as antiangiogenic agent and carrier for anticancer drug: dual attack on cancer. J Nanosci Nanotechnol 14:5075–5087

    Article  Google Scholar 

  • Jain K, Kesharwani P, Gupta U, Jain N (2010) Dendrimer toxicity: let’s meet the challenge. Int J Pharm 394:122–142

    Article  Google Scholar 

  • Jain K, Kesharwani P, Gupta U, Jain NK (2012) A review of glycosylated carriers for drug delivery. Biomaterials 33:4166–4186

    Article  Google Scholar 

  • Jain A, Jain K, Kesharwani P, Jain N (2013a) Low density lipoproteins mediated nanoplatforms for cancer targeting. J Nanopart Res 15:1–38

    Article  Google Scholar 

  • Jain A, Jain K, Mehra NK, Jain NK (2013b) Lipoproteins tethered dendrimeric nanoconstructs for effective targeting to cancer cells. J Nanopart Res 15:1–18

    Article  Google Scholar 

  • Jain K, Gupta U, Jain NK (2014a) Dendronized nanoconjugates of lysine and folate for treatment of cancer. Eur J Pharm Biopharm 87:500–509

    Article  Google Scholar 

  • Jain K, Mehra NK, Jain NK (2014b) Potential NAD emerging trends in nanopharmacology. Curr Opin Pharmacol 15:97–106

    Article  Google Scholar 

  • Jain K, Verma AK, Mishra P, Jain NK (2015a) Characterization and evaluation of Amphotericin B loaded MDP conjugated poly(propylene imine) dendrimers. Nanomedicine. doi:10.1016/j.nano.2014.11.008

    Google Scholar 

  • Jain K, Verma AK, Mishra P, Jain NK (2015b) Surface-engineered dendrimeric nanoconjugates for macrophage-targeted delivery of Amphotericin B: formulation development, in vitro and in vivo evaluation. Antimicrob Agents Chemother. doi:10.1128/AAC.04213-14

    Google Scholar 

  • Jansen JFGA, Meijer EW, Debrabander Van-denberg EMM (1995) The dendritic box: shape-selective liberation of encapsulated guests. J Am Chem Soc 117:4417–4418

    Article  Google Scholar 

  • Jones CF, Campbell RA, Brooks AE, Assemi S, Tadjiki S, Thiagarajan G, Mulcock C, Weyrich AS, Brooks BD, Ghandehari H, Grainger DW (2012) Cationic PAMAM dendrimers aggressively initiate blood clot formation. ACS Nano 6(11):9900–9910

    Article  Google Scholar 

  • Kesharwani P, Iyer AK (2015) Recent advances in dendrimer-based nanovectors for tumor-targeted drug and gene delivery. Drug Discov Today 20(5):536–547

    Article  Google Scholar 

  • Kesharwani P, Tekade RK, Gajnhiye V, Jain K, Jain NK (2011) Cancer targeting potential of some ligand-anchored poly(propylene imine) dendrimers: a comparison. Nanomedicine 7:295–304

    Google Scholar 

  • Kesharwani P, Jain K, Jain NK (2014a) Dendrimer as nanocarrier for drug delivery. Polym Sci 39:268–307

    Google Scholar 

  • Kesharwani P, Tekade RK, Jain NK (2014b) Formulation development and in vitro–in vivo assessment of the fourth-generation PPI dendrimer as a cancer-targeting vector. Nanomedicine 9(15):1–18

    Article  Google Scholar 

  • Kesharwani P, Tekade RK, Jain NK (2014c) Generation dependent cancer targeting poly(propyleneimine) dendrimer. Biomaterials 35:5539–5548

    Article  Google Scholar 

  • Kesharwani P, Tekade RK, Jain NK (2015a) Dendrimer generational nomenclature: the need to harmonize. Drug Discov Today 20(5):497–499

    Article  Google Scholar 

  • Kesharwani P, Banerjee S, Gupta U, Mohd Amin MCI, Padhye S, Sarkar FH, Iyer AK (2015b) PAMAM dendrimers as promising nanocarriers for RNAi therapeutics. Mater Today 18:565–572

    Article  Google Scholar 

  • Kesharwani P, Xie L, Banerjee S, Mao G, Padhye S, Sarkar FH, Iyer AK (2015c) Hyaluronic acid-conjugated polyamidoamine dendrimers for targeted delivery of 3,4-difluorobenzylidene curcumin to CD44 overexpressing pancreatic cancer cells. Colloids Surf B 136:413–423

    Article  Google Scholar 

  • Kitchens KM, EI-Sayed ME, Ghandehari H (2005) Transepithelial and endothelial transport of poly(amidoamine) dendrimers. Adv Drug Delivery Rev 57:2163–2176

    Article  Google Scholar 

  • Klajnert B, Bryszewska M (2000) Dendrimers: properties and application. Acta Biochim Pol 48:199–208

    Google Scholar 

  • Klajnert B, Pikala S, Bryszewska M (2010) Haemolytic activity of polyamidoamine dendrimers and the protective role of human serum albumin. Proc R Soc A 466:1527–1534

    Article  Google Scholar 

  • Kumari A, Singla R, Guliani A, Yadav SK (2014) Nanoencapsulation for drug delivery. EXCLI J 13:265–286

    Google Scholar 

  • Landge DA, Shyale S, Kadam SD, Shah DV, Katare YS, Pawar JB (2014) Dendrimer: innovative acceptable approach in novel drug delivery system. Pharmacophore 5:24–34

    Google Scholar 

  • Lee JW, Kim B, Kim JH, Shin WS, Jin S (2005) Facile synthesis of Frechet type dendritic benzyl azides and dendrimer via cycloaddition reaction with tripodal core. Bull Korean Chem Soc 26:1790

    Article  Google Scholar 

  • Leng ZH, Zhuang QF, Li YC, He Z, Chen Z, Huang SP, Jia HY, Zhou JW, Liu Y, Du LB (2013) Polyamidoamine dendrimer conjugated chitosan nanoparticles for the delivery of methotrexate. Carbohydr Polym 98:1173–1178

    Article  Google Scholar 

  • Malik N, Wiwattanapatapee R, Klopsch R, Lorenz K, Frey H, Weener JW (2000) Dendrimers versatile vectors in gene delivery. J Control Release 65:133–148

    Article  Google Scholar 

  • Malik A, Chaudhary S, Garg G, Tomar A (2012) Dendrimers: a tool for drug delivery. Adv Biol Res 6:165–169

    Google Scholar 

  • Marvaniya HM, Parikh PK, Vr Patel, Modi KN, Sen DJ (2010) Dendrimer versatile vectors in gene delivery. J Chem Pharm Res 2:97–108

    Google Scholar 

  • Mehra NK, Jain K, Jain NK (2015) Pharmaceutical and biological applications of surface engineered carbon nanotubes. Drug Discov Today. doi:10.1016/j.drudis.2015.01.006

    Google Scholar 

  • Menjoge AR, Kannan RM, Tomalia DA (2010) Dendrimer-based drug and imaging conjugate: design consideration for nanomedical applications. Drug Discov Today 15:171–185

    Article  Google Scholar 

  • Mishra I (2011) Dendrimer: a novel drug delivery system. JDDT 1(2):70–74

    Google Scholar 

  • Mishra V, Kesharwani P (2016) Dendrimer technologies for brain tumor. Drug Discov Today. doi:10.1016/j.drudis.2016.02.006 (Epub ahead of print)

  • Mishra V, Gupta U, Jain N (2015) Influence of different generations of poly(propylene imine) dendrimers on human erythrocytes. Die Pharm Int J Pharm Sci 65:891–895

    Google Scholar 

  • Mullen DG, Desai A, van Dongen MA, Barash M, Baker JR Jr, Banaszak Holl MM (2012) Best practices for purification and characterization of PAMAM dendrimer. Macromolecules 45:5316–5320

    Article  Google Scholar 

  • Myers VS, Weir MG, Carino EV, Yancey DF, Pande S, Crooks RM (2001) Dendrimer-encapsulated nanoparticles: new synthetic and characterization method and catalytic applications. Chem Sci 2:1632–1646

    Article  Google Scholar 

  • Narayan PS, Pooja S, Khushboo A, Diwakar T, Ankit S, Singhai A (2010) A novel drug delivery system. Int J Pharm Life Sci 1(7):382–388

    Google Scholar 

  • Newkome GR, Shreiner CD (2008) Poly(amidoamine), polypropyleneimine and related dendrimers and dendrons possessing different 1 → 2 branching motifs: an overview of the divergent procedure. Polymer 49:1–73

    Article  Google Scholar 

  • Newkome GR, Yao ZQ, Baker GR, Gupta VK (1985) Cascade molecules: a new approach to micelles. J Org Chem 2003–2004:50

    Google Scholar 

  • Oliveira JM, Salgado AJ, Sousa N, Mano JF, Reis RL (2010) Dendrimers and derivatives as a potential therapeutics tool in regenerative medicine strategies—a review. Prog Polym Sci 35:1163–1194

    Article  Google Scholar 

  • Pakhare SS, Tambe RV, Jadhav MG, Tiwari SS (2000) Dendrimers: a smart polymer. IJRRAS 2(3):513–528

    Google Scholar 

  • Patel H, Patel P (2013) Dendrimer application—a review. Int J Pharm Biol Sci 4:454–463

    Google Scholar 

  • Patidar A, Thakur DS (2011) Dendrimers: potential carriers for drug delivery. J Pharm Sci Nanotechnol 2011:4

    Google Scholar 

  • Peterson J (2001) Synthesis and CZE analysis of PAMAM dendrimers with an ethylenediamine core. Proc Est Acad Sci Chem 50(3):156–166

    Google Scholar 

  • Pyreddy S, Kumar PD, Kumar PV (2014) Polyethylene glycolated PAMAM dendrimers-conjugates. Int J Pharm Investig 4:15

    Article  Google Scholar 

  • Sampathkumar SG, Yarema KJ (2007) Dendrimers in cancer treatment and diagnosis. Nanotechnol Life Sci 7:1–43

    Google Scholar 

  • Shah N, Steptoe RJ, Parekh HS (2011) Low-generation asymmetric dendrimers exhibit toxicity and effectively complex DNA. J Pept Sci 17:470–478

    Article  Google Scholar 

  • Shan Y, Luo T, Sheng R, Cao A, Cao X, Shen M, Guo R, Tomas H, Shi X (2012) Gene delivery using dendrimer-entrapped gold nanoparticles as nonviral vector. Biomaterials 33:3025–3035

    Article  Google Scholar 

  • Shao N, Su Y, Hu J, Zhang J, Zhang H, Cheng Y (2011) Comparison of generation 3 polyamidoamine dendrimer and generation 4 polypropyleneimine dendrimer on drug loading, complex structure, release behaviour and cytotoxicity. Int J Nanomed 6:3361

    Google Scholar 

  • Silva N Jr, Menacho F, Chorilli M (2012) Dendrimers as potential platform in a no technology-based drug delivery system. IOSR J Pharm 2:23–30

    Google Scholar 

  • Singla H, Singla N (2014) Novel role of nanotechnology in medicine. Int J Biomed Res 5:482–486

    Article  Google Scholar 

  • Svenson S (2009) Dendrimers as versatile platform in drug delivery applications. Eur J Pharm Biopharm 71:445–464

    Article  Google Scholar 

  • Thatikonda S, Yellanki SK, Swamy Charan D, Arjun D, Balaji A (2013) Dendrimers—a new class of polymers. Int J Pharm Sci Res 4:2174–2183

    Google Scholar 

  • Tomalia DA, Baker H, Dewald JR, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P (1985) A new class of polymers: starburst-dendritic macromolecules. Polym J 17:117–132

    Article  Google Scholar 

  • Tomalia DA, Naylor AM, Goddard WA III (1990) Starburst dendrimers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew Chem Int Ed 29:138–175

    Article  Google Scholar 

  • Tomalia DA, Christensen JB, Boas U (2012a) Dendrimers, dendrons and dendritic polymers: discovery, applications, the future. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Tomalia DA, Christensen JB, Boas U (2012b) Chapter 3. In: Dendrimers, dendrons and dendritic polymers: discovery, applications, the future. Cambridge University Press, Cambridge, p 113–161

  • Tripathy S, Das MK (2013) Dendrimers and their applications as novel drug delivery carriers. J Appl Pharm Sci 3:142–149

    Google Scholar 

  • Volcke C, Pirotton S, Grandfils C, Humbert C, Thiry PA, Ydens I et al (2006) Influence of DNA condensation state on transfection efficiency in DNA/polymer complexes: an AFM and DLS comparative study. J Biotechnol 125:11–21

    Article  Google Scholar 

  • Winnicka K, Bielawski K, Rusak M, Bielawska A (2009) The effect of generation 2 and 3 poly(amidoamine) dendrimers on viability of human breast cancer cells. J Health Sci 55:169–177

    Article  Google Scholar 

  • Wu J, Huang W, He Z (2013) Dendrimers as carriers for siRNA delivery and gene silencing: a review. Sci World J. doi:10.1155/2013/630654

    Google Scholar 

  • Ziemba B, Halets I, Shcharbin D, Appelhans D, Voit B, Pieszynski I, Bryszewska M, Klajnert B (2012) Influence of fourth generation poly(propyleneimine) dendrimers on blood cells. J Biomed Mater Res A 100:2870–2880

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Keerti Jain or Narendra K. Jain.

Ethics declarations

Conflict of interest

Authors report no conflict of interest related to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, D., Jain, K., Mehra, N.K. et al. A review on comparative study of PPI and PAMAM dendrimers. J Nanopart Res 18, 146 (2016). https://doi.org/10.1007/s11051-016-3423-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3423-0

Keywords

Navigation